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BY KE WANG1,a,
1Department of Mathematics, The Hong Kong University of Science and Technology, akewang@ust.hk

We present a comprehensive analysis of singular vector and singular sub-
space perturbations in the signal-plus-noise matrix model with random Gaus-
sian noise. Assuming a low-rank signal matrix, we extend the Davis-Kahan-
Wedin theorem in a fully generalized manner, applicable to any unitarily
invariant matrix norm, building on previous results by O’Rourke, Vu, and
the author. Our analysis provides fine-grained insights, including `∞ bounds
for singular vectors, `2,∞ bounds for singular subspaces, and results for lin-
ear and bilinear functions of singular vectors. Additionally, we derive `2,∞
bounds on perturbed singular vectors, taking into account the weighting by
their corresponding singular values. Finally, we explore practical implications
of these results in the Gaussian mixture model and the submatrix localization
problem.

1. Introduction. Matrix perturbation theory has emerged as a central and foundational
subject within various disciplines, including probability, statistics, machine learning, and ap-
plied mathematics. Perturbation bounds, which quantify the influence of small noise on the
spectral parameters of a matrix, are of paramount importance in numerous applications such
as matrix completion [30, 31, 49], principal component analysis (PCA) [48], and community
detection [66, 67], to mention a few. This paper aims to present a comprehensive analysis es-
tablishing perturbation bounds for the singular vectors and singular subspaces of a low-rank
signal matrix perturbed by additive random Gaussian noise.

Consider an unknown N × n data matrix A. Suppose we cannot observe A directly but
instead have access to a corrupted version Ã given by

(1) Ã :=A+E,

where E represents the noise matrix. In this paper, we focus on real matrices, and the exten-
sion to complex matrices is straightforward.

Assume that the N × n data matrix A has rank r ≥ 1. The singular value decomposition
(SVD) of A takes the form A = UDV T , where D = diag(σ1, . . . , σr) is a diagonal matrix
containing the non-zero singular values σ1 ≥ σ2 ≥ · · · ≥ σr > 0 of A; the columns of the
matrices U = (u1, . . . , ur) and V = (v1, . . . , vr) are the orthonormal left and right singular
vectors of A, respectively. In other words, ui and vi are the left and right singular vectors
corresponding to σi. It follows that UTU = V TV = Ir , where Ir is the r× r identity matrix.
For convenience we will take σr+i = 0 for all i ≥ 1. Denote the SVD of Ã given in (1)
similarly by Ã= ŨD̃Ṽ T, where the diagonal entries of D̃ are the singular values σ̃1 ≥ σ̃2 ≥
· · · ≥ σ̃min{N,n} ≥ 0, and the columns of Ũ and Ṽ are the orthonormal left and right singular
vectors, denoted by ũi and ṽi, respectively.

The primary focus of this paper is the singular subspaces that are spanned by the leading
singular vectors. For 1≤ k ≤ r, let us denote

Uk := Span{u1, . . . , uk}, Vk := Span{v1, . . . , vk},

Ũk := Span{ũ1, . . . , ũk}, Ṽk := Span{ṽ1, . . . , ṽk}.
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With a slight abuse of notation, we also use Uk = (u1, . . . , uk) to represent the singular vector
matrix. We employ the notation Vk, Ũk, Ṽk in a similar manner. Let PUk

= UkU
T
k (resp. PVk

=
VkV

T
k ) be the orthogonal projection on the subspace Uk (resp. Vk). Denote the orthogonal

complement of a subspace W as W⊥.
The classical perturbation bounds related to the changes in singular values and singular

vectors are detailed below. The matrix norm ||| · ||| on RN×n is said to be unitarily invariant
if |||A||| = |||UAV ||| for all orthogonal matrices U ∈ RN×N and V ∈ Rn×n. In addition, we
always consider the norm ||| · ||| to be normalized. This means that the norm always satisfies
|||A||| = 1 if A has its (1,1) entry equal to 1 and all other entries equal to zero. A more
thorough exploration of the properties of unitarily invariant matrix norms can be found in the
supplementary material [69].

Denote diag(σi − σ̃i) = diag(σ1 − σ̃2, · · · , σmin{N,n} − σ̃min{N,n}). This represents the
difference in singular values between A and A + E. The perturbations or changes in the
singular values of A and A + E are provided by Mirsky’s theorem (see Theorem 4.11 in
Chapter IV from [64]).

THEOREM 1.1 (Mirsky). Let Ã=A+E as in (1). Then for any unitarily invariant norm
||| · |||,

|||diag(σi − σ̃i)||| ≤ |||E|||.

When applied to the operator norm and eigenvalues of Hermitian matrices, the inequality
stated can be recognized as the Weyl’s inequality (see [21, Corollary III.2.6]).

The differences between subspaces Uk and Ũk of A and A + E can be quantified by
calculating the separation between Uk and Ũk. This is achieved using k principal angles,
defined as 0 ≤ θ1 ≤ · · · ≤ θk ≤ π/2. These angles measure the distance between the two
subspaces. A detailed definition is given in Section 2.1 below. Denote

sin∠(Uk, Ũk) := diag(sinθ1, · · · , sinθk).

Define sin∠(Vk, Ṽk) analogously. The classical perturbation bound, which concerns the vari-
ations in the eigenspaces for symmetric matrices A and A+E, was initially investigated by
Davis and Kahan [40]. Further generalizations to singular subspaces of rectangular matrices
are encapsulated in Wedin’s theorem (Eq. (3.11) from [71]).

THEOREM 1.2 (Wedin [71]). Let Ã=A+E as in (1). If δ̂k := σk − σ̃k+1 > 0, then for
any unitarily invariant norm ||| · |||,

(2) ||| sin∠(Uk, Ũk)||| ≤
max{|||PU⊥k EPṼk

|||, |||PV ⊥k E
TPŨk

|||}
δ̂k

.

The same result also holds for ||| sin∠(Vk, Ṽk)|||.

In the context of a unitarily invariant norm ||| · |||, there exist several well-established meth-
ods to quantify the separation between Uk and Ũk. These include using

||| sin∠(Uk, Ũk)|||, |||PUk
− PŨk

||| and min
O∈Ok×k

|||UkO− Ũk|||.

In the supplementary material [69], we provide a detailed discussion about the equivalence
or relationships among these various methods.

The traditional bounds previously mentioned offer precise estimates, catering to worst-
case scenarios. However, modern applications often operate under the premise that the data



SINGULAR SUBSPACE PERTURBATION UNDER RANDOM NOISE 3

matrix A satisfies specific structural assumptions. A typical case is when A has a low rank
r, where r remains constant or experiences slow growth relative to N and n. Moreover, the
noise matrix E is generally assumed to be random.

In this paper, we aim to develop a stochastic variant of Wedin’s theorem under these ad-
ditional assumptions that the signal matrix A is low-rank and the noise E consists of i.i.d.
Gaussian entries. This work builds on the recent developments in [60, 61], and offers several
substantial improvements. We extend the classical Davis-Kahan-Wedin theorem for unitarily
invariant norms, provide sharper bounds with improved dependence on the signal rank r,
and relax several technical assumptions used in earlier analyses. A more detailed comparison
with prior works appears in Section 4.2.

There is currently a surging interest in `∞ analysis (also known as entrywise analysis) of
eigenvectors and singular vectors. This dynamic research area focuses on deriving rigorous
bounds, such as `∞ bounds [2, 20, 36, 43, 45, 78] for eigenvectors or singular vectors, and
`2,∞ bounds for eigenspaces or singular subspaces [1, 4, 27, 32, 53], in relation to perturbed
matrix models. These analyses have significant impact across statistics and machine learning
applications.

Inspired by recent advancements, we have derived precise `∞ bounds for the perturbed
singular vectors and the `2,∞ bounds for the perturbed singular subspaces of A+E. We have
also established results for linear and bilinear forms of the perturbed singular vectors and
subspaces, and investigated the `2,∞ bounds on the perturbed singular vectors weighted by
their singular values. These new results are presented in Section 2.2. Throughout, we assume
that the noise E has i.i.d. Gaussian entries; extensions to sub-Gaussian noise are discussed
in Remark 2.15. Section 4 summarizes our main contributions and discusses the optimality
of our bounds, with a focus on rank dependence. A high-level overview of the proof strategy
appears in Section 6.2, following notation in Section 6.1. Full proofs are deferred to the
supplementary material [69].

In Section 5, we demonstrate the practical applications of our theoretical findings within
two statistical models: the Gaussian mixture model and the submatrix localization problem.
Our main goal is to use these results to examine how well spectral algorithms work and
provide clear, straightforward proofs of their performance.

Organization: Section 2 presents our new matrix perturbation results, with Section 2.1 ex-
tending Wedin’s sin Θ theorem to stochastic versions for arbitrary unitarily invariant norms.
Section 2.2 provides results on `∞ and `2,∞ norms of singular vectors and subspaces, while
Section 3 surveys related literature. Section 4 discusses our main contributions and their op-
timality. Applications to Gaussian mixture model and submatrix localization are presented
in Sections 5.1 and 5.2. Section 6 introduces basic tools and proof strategies, with detailed
proofs and extensive numerical simulations provided in the supplementary material [69].

Notation: For a vector v = (v1, · · · , vn) ∈ Rn, the following norms are frequently used:
‖v‖ =

√∑n
i=1 v

2
i and ‖v‖∞ = maxi |vi|. Also, ‖v‖0 is the number of non-zero elements

in v. For a real matrix M , ‖M‖ denotes its operator norm, while ‖M‖F represents its
Frobenius norm. The term ‖M‖max refers to the largest absolute value among its entries,
and ‖M‖2,∞ indicates the maximum Euclidean norm of its rows. For a set S, let 1S be
the indicator function of this set. For two functions f(n), g(n) > 0, we use the asymptotic
notations f(n)� g(n) and g(n) = o(f(n)) if f(n)/g(n)→∞ as n→∞. The notation
f(n) = O(g(n)) and f(n) . g(n) are used when there exists some constant C > 0 such
that f(n)≤ Cg(n) for sufficiently large n. If f(n) =O(g(n)) and g(n) =O(f(n)), we de-
note f(n)� g(n). The set of n× n orthogonal matrices is denoted by On×n. We denote by

A⊕B :=

(
A 0
0 B

)
the direct sum (block diagonal concatenation) of two matrices A and B.
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2. New results on the matrix perturbation bounds.

2.1. Stochastic Wedin’s sin Θ theorem. We first generalize the previous results in [60, 61]
to an arbitrary unitarily invariant norm ||| · |||. We start with the concept of principal angles.
Let H and W are two subspaces each of dimension k. The principal angles 0≤ θ1 ≤ · · · ≤
θk ≤ π/2 between H and W are defined recursively as follows:

cos(θi) = max
h∈H,w∈W

hTw = hTi wi, ‖h‖= ‖w‖= 1

subject to the constraint

hTi hl = 0, wTi wl = 0 for l= 1, . . . , i− 1.

Denote ∠(H,W ) := diag(θ1, · · · , θk) and sin∠(H,W ) := diag(sinθ1, · · · , sinθk).
For any 1≤ k ≤ s≤ r, denote

Uk,s := Span{uk, . . . , us}, Ũk,s := Span{ũk, . . . , ũs},

PUk,s
the orthogonal projection onto Uk,s, and analogously for Vk,s, Ṽk,s and PVk,s

. Denote

Dk,s = diag(σk, · · · , σs)

and analogously for D̃k,s. If k = 1, we simply use Ds, D̃s,Us, Ũs, PUs
and Vs, Ṽs, PVs

.
The spectral gap (or separation)

δk := σk − σk+1,

which refers to the difference between consecutive singular values of a matrix, will play a
key role in the following results.

THEOREM 2.1 (Unitarily invariant norms: simplified asymptotic version). Let A and E
be N × n real matrices, where A is deterministic with rank r ≥ 1 and the entries of E
are i.i.d. N (0, τ2) random variables. Let ||| · ||| be any normalized, unitarily invariant norm.
Consider 1≤ k ≤ r such that δk & τr

√
r+ log(N + n). Denote k0 = min{k, r − k}. Then

with probability 1− (N + n)−C for some C > 0,

||| sin∠(Uk, Ũk)|||. τ
√
kk0

√
r+ log(N + n)

δk
+
|||PU⊥EPṼk

|||+ |||PV ⊥ETPŨk
|||

σk
.(3)

Specifically, for the operator norm, we have with probability 1− (N + n)−C ,

‖ sin∠(Uk, Ũk)‖. τ
√
k

√
r+ log(N + n)

δk
1{k 6=r} +

‖E‖
σk

(4)

The same conclusion also holds for sin∠(Vk, Ṽk).

This bound serves as a comprehensive generalization of the classical Wedin’s bound in
Theorem 1.2 when applied to the context of random noise. When k = r, the first term on
the right-hand side of (3) vanishes, then (3) is essentially consistent with the Wedin’s bound
in Theorem 1.2. When k < r, it is worth noting that PU⊥k = PUk+1,r

+ PU⊥ and PV ⊥k =
PVk+1,r

+ PV ⊥ . Using Wedin’s bound (2), one can deduce that

||| sin∠(Uk, Ũk)|||

≤
|||PUk+1,r

EPṼk
|||+ |||PVk+1,r

ETPŨk
|||

δ̂k
+
|||PU⊥EPṼk

|||+ |||PV ⊥ETPṼk
|||

δ̂k
.(5)
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In the setting of a low-rank signal matrix A and random noise E, our result (3) improves the
second term on the right-hand side of (5) by replacing the denominator δ̂k = σk− σ̃k+1 with a
usually much larger quantity σk. Additionally, we demonstrate that the first term on the right-
hand side of (5) is essentially C(r)/δk, where C(r) . r3/2. This improvement is particularly
important in statistical applications where δk� σk, which frequently occurs in settings such
as principal component analysis, matrix completion, and spiked covariance models. In these
regimes, the Wedin’s bounds become loose or even vacuous because they require the spectral
gap to be comparable to the noise level. By contrast, our bounds remain effective by leverag-
ing the signal strength σk, providing meaningful and tighter control even when δk� σk.

In practice, computing the second term on the right-hand side of (3) precisely is chal-
lenging due to the dependence among E,PŨk

, PṼk
. Therefore, for practical applications, a

simplified bound below offers convenience.

COROLLARY 2.2. Under the assumptions of Theorem 2.1, the following holds with prob-
ability 1− (N + n)−C ,

||| sin∠(Uk, Ũk)|||. τ
√
kk0

√
r+ log(N + n)

δk
+ k
‖E‖
σk

.(6)

Theorem 2.1 follows immediately from the next general and non-asymptotic result. For
notation, let σ0 :=∞, δ0 :=∞, and working with τ−1(A+ E), we assume E has N (0,1)
entries. We define

χ(b) := 1 +
1

4b(b− 1)
for b≥ 2.

THEOREM 2.3 (Unitarily invariant norms: Gaussian noise). Let A and E be N × n real
matrices, where A is deterministic and the entries of E are i.i.d. standard Gaussian random
variables. Let ||| · ||| be any normalized, unitarily invariant norm. Assume A has rank r ≥ 1.
LetK > 0 and b≥ 2. Denote η := 11b2

(b−1)2
√

2(log 9)r+ (K + 7) log(N + n). Assume (
√
N+

√
n)2 ≥ 32(K+ 7) log(N +n) + 64(log 9)r. Consider 1≤ r0 ≤ r such that σr0 ≥ 2b(

√
N +√

n) + 80bηr and δr0 ≥ 75χ(b)ηr. For any 1 ≤ k ≤ s ≤ r0, if min{δk−1, δs} ≥ 75χ(b)ηr,
then

||| sin∠(Uk,s, Ũk,s)||| ≤6
√

2
(b+ 1)2

(b− 1)2

√
min{s− k+ 1, r− s+ k− 1} η

√
s− k+ 1

min{δk−1, δs}

+ 2
|||PU⊥EPṼk,s

⊕ PV ⊥ETPŨk,s
|||

σs
(7)

with probability at least 1− 20(N + n)−K .
Specifically, for the operator norm, we have with probability at least 1− 20(N + n)−K

‖ sin∠(Uk,s, Ũk,s)‖ ≤ 3
√

2
(b+ 1)2

(b− 1)2
1{s−k+16=r}

η
√
s− k+ 1

min{δk−1, δs}
+ 2
‖E‖
σs

.

The same conclusion also holds for sin∠(Vk,s, Ṽk,s).

REMARK 2.4. The parametersK and b are user-specified positive constants. The param-
eterK controls the probability level: largerK yields a smaller failure probability (N+n)−K

at the cost of slightly larger constants. The parameter b governs the trade-off between the re-
quired singular value separation (through χ(b)) and the constants in the bound. A larger b
corresponds to a stronger signal regime: it reduces χ(b), thereby relaxing the spectral gap
assumption, and can also lead to sharper constants in the final estimates.
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REMARK 2.5. Throughout the proofs, we work on the event that ‖E‖ ≤ 2(
√
N +

√
n).

Lemma 6.7 below guarantees this event holds with very high probability. In Theorem 2.3,
the parameter b ≥ 2 represents the signal-to-noise ratio, and in the proof, we ensure that
σr0/‖E‖ ≥ b. The parameter b, which could depend on N and n, could account for a partic-
ularly strong signal. We have selected certain constants and expressions such as 80, 75χ(b),
and (b+1)2

(b−1)2 for the sake of convenience in our computations while our primary objective was
not to optimize these constants within the proof. It is also feasible to conduct work on the
event that ‖E‖ ≤ (1 + ε1)(

√
N +

√
n), and assume b ≥ 1 + ε2 for ε1, ε2 > 0. By following

the same proof, one can arrive at refined constants and bounds.

To go beyond the i.i.d. Gaussian noise matrix, we record the following results on the per-
turbation of singular values and singular subspaces that is obtained using a similar approach
as in the previous work by O’Rourke, Vu and the author [60]. In particular, these results re-
main valid for random noise of any specific structure, as long as the noise has a negligible
effect on the singular subspaces of matrix A.

THEOREM 2.6 (Singular value bounds: general noise). Assume A has rank r and E is
random. Let 1≤ k ≤ r. Consider any ε ∈ (0,1).

• If there exists t > 0 such that ‖UTk EVk‖ ≤ t with probability at least 1− ε, then we have,
with probability at least 1− ε,

σ̃k ≥ σk − t.(8)

• If there exist L,B > 0 such that ‖UTEV ‖ ≤ L and ‖E‖ ≤ B with probability at least
1− ε, then we have, with probability at least 1− ε,

σ̃k ≤ σk + 2
√
k
B2

σ̃k
+ k

B3

σ̃2k
+L.(9)

THEOREM 2.7 (Singular subspace bounds: general noise). Assume A has rank r and E
is random. Let 1 ≤ k ≤ r. For ε > 0, assume there exist L,B > 0 such that ‖UTEV ‖ ≤ L
and ‖E‖ ≤ B with probability at least 1− ε. Furthermore, assume δk = σk − σk+1 ≥ 2L.
Then for any normalized, unitarily invariant norm ||| · |||, the following holds with probability
at least 1− ε,

||| sin∠(Uk, Ũk)||| ≤ 2
√
kmin{k, r− k}

(
L

δk
+ 2

B2

δkσk

)
+ 2k

B

σk
.

More specifically, for the operator norm,

‖ sin∠(Uk, Ũk)‖ ≤ 2
√
k

(
L

δk
+ 2

B2

δkσk

)
1{k<r} + 2

B

σk
.

The same result also holds for sin∠(Vk, Ṽk).

To apply Theorems 2.6 and 2.7, it is necessary to obtain effective bounds on ‖E‖ and
‖UTEV ‖. In general, matrix concentration inequalities (refer to [65] for example) can pro-
vide good upper bounds on ‖E‖ for random noise E with heteroskedastic entries and even
complex correlations among the entries. On the other hand, UTEV is an r × r matrix, and
‖UTEV ‖ typically depends on r. Bounds on ‖UTEV ‖ can be obtained by applying con-
centration inequalities. We note that in the symmetric setting, Eldridge et al. [43, Theorem 6]
established related eigenvalue upper bounds. Both approaches begin with the min-max char-
acterization, but differ in methodology: we use a direct bilinear form argument, while they
leverage signal-aligned subspaces. For random noise matrices, our bounds can provide better
control when k is not too large, while their framework offers additional precision through
explicit exploitation of spectral gaps when present.
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2.2. `∞ and `2,∞ analysis. Next, we present a result regarding the estimation of the
singular vectors on an entrywise basis. In this context, a parameter known as the incoher-
ence parameter of the singular vector matrices U and V , denoted as ‖U‖2,∞ and ‖V ‖2,∞, is
of central importance. Smaller values of ‖U‖2,∞ and ‖V ‖2,∞ suggest that the information
contained in the signal matrix A is less concentrated in just a few rows or columns.

In this section, we use Uk,s = (uk, · · · , us) to denote the singular vector matrix for 1 ≤
k ≤ s≤ r. We abbreviate Uk,s to Us when k = 1. Note that PUk,s

= Uk,sU
T
k,s. These notations

also apply to Ũk,s and Ũs. For simplicity, we only state the results for the left singular vectors
Uk,s. The corresponding results for the right singular vectors can be derived by applying these
results to the transposes of matrices AT and AT +ET.

Let us make a temporary assumption that σ1 ≤ n2. This assumption is reasonable because
if σk > n2, it indicates a highly significant signal, and the impact of noise becomes negligible
in such cases. Theorem 2.10 later will provide a precise treatment of these strong singular
values (i.e., without the assumption σ1 ≤ n2). Denote σ0 :=∞ and δ0 :=∞.

THEOREM 2.8 (`∞ and `2,∞ bounds: simplified asymptotic version). Let A and E be
N × n real matrices, where A is deterministic with rank r ≥ 1 and the entries of E are i.i.d.
N (0, τ2) random variables. Let 1≤ k ≤ r and σk ≥ 2‖E‖. Assume that σ1 ≤ n2.

• If min{δk−1, δk}& τr
√
r+ log(N + n), then with probability 1− (N + n)−C ,

‖ũk − (ũTk uk)uk‖∞ . τ

√
r+ log(N + n)

min{δk−1, δk}
‖U‖2,∞ + τ

√
r log(N + n)

σk
.

• If δk & τr
√
r+ log(N + n), then with probability 1− (N + n)−C ,

‖Ũk − PUk
Ũk‖2,∞ . τ

√
k

√
r+ log(N + n)

δk
‖U‖2,∞ + τ

√
k

√
r log(N + n)

σk
.

In many applications, the primary interest lies in comparing Ũk with UkO, accounting
for the non-uniqueness of singular vectors via an orthogonal matrix O. A suitable choice of
O that aligns Uk with Ũk effectively can be determined by examining the SVD of UT

k Ũk.
By Proposition A.5 in [69], the SVD of UT

k Ũk is UT
k Ũk = O1 cos∠(Uk, Ũk)O

T
2 and we

choose O =O1O
T
2 . Note that the discrepancy between UT

k Ũk and O can be measured by the
principal angles between the subspaces Uk and Ũk. In Proposition A.6 in [69], we establish

‖Ũk −UkO‖2,∞ ≤ ‖Ũk − PUk
Ũk‖2,∞ + ‖Uk‖2,∞ ‖ sin∠(Uk, Ũk)‖2.(10)

Therefore, by combining Theorem 2.3 with Theorem 2.8, we obtain the next result.

COROLLARY 2.9. Under the same assumption as Theorem 2.8, the following holds:

• If min{δk−1, δk}& τr
√
r+ log(N + n), then with probability 1− (N + n)−C ,

min
s∈{±1}

‖uk − sũk‖∞ .τ

√
r+ log(N + n)

min{δk−1, δk}
‖U‖2,∞ + τ

√
r log(N + n)

σk
+
‖E‖2

σ2k
‖uk‖∞.

• If δk & τr
√
r+ log(N + n), then with probability 1− (N + n)−C ,

min
O∈Ok×k

‖Ũk −UkO‖2,∞ .τ
√
k

√
r+ log(N + n)

δk
‖U‖2,∞

+ τ
√
k

√
r log(N + n)

σk
+
‖E‖2

σ2k
‖Uk‖2,∞.
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Theorems 2.8 follows as a direct consequence of the next general and non-asymptotic
result, which we will prove in [69]. By a scaling, it suffices to assume E has N (0,1) entries.

THEOREM 2.10. Let A and E be N × n real matrices, where A is deterministic and the
entries of E are i.i.d. standard Gaussian random variables. Assume A has rank r ≥ 1. Let
K > 0 and b ≥ 2. Denote η := 11b2

(b−1)2
√

2(log 9)r+ (K + 7) log(N + n). Assume (
√
N +

√
n)2 ≥ 32(K+ 7) log(N +n) + 64(log 9)r. Consider 1≤ r0 ≤ r such that σr0 ≥ 2b(

√
N +√

n) + 80bηr and δr0 ≥ 75χ(b)ηr. For any 1 ≤ k ≤ s ≤ r0, if min{δk−1, δs} ≥ 75χ(b)ηr,
then with probability at least 1− 40(N + n)−K ,

‖Ũk,s − PUk,s
Ũk,s‖2,∞ ≤ 3

√
2

(b+ 1)2

(b− 1)2
‖U‖2,∞

η
√
s− k+ 1

min{δk−1, δs}
1{s−k+16=r}

+
4
√

2b2

(b− 1)2

√√√√ ∑
i∈Jk,sK,σi≤n2

γ2

σ2i
+

∑
i∈Jk,sK,σi>n2

16n

σ2i
,(11)

where γ := 9b2

(b−1)2
√
r(K + 7) log(N + n).

It should be noted that, as per the aforementioned result, the term
∑

k≤i≤s,σi>n2
16n
σ2
i
< 16

n2

can always be considered negligible in comparison to the other terms. Indeed, when the signal
is extremely strong, i.e., σi > n2 � ‖E‖ = Θ(

√
N +

√
n), the impact of noise becomes

minimal.
More generally, we can establish the following result, which provides bounds for the sin-

gular subspaces in any arbitrary direction. The complete result follows a format similar to
Theorem 2.10. The proofs are provided in [69].

THEOREM 2.11 (Bounds on linear and bilinear forms). Under the assumptions of Theo-
rem 2.10, for any unit vectors x ∈RN and y = (yk, · · · , ys)T ∈Rs−k+1, the following holds
with probability at least 1− 40(N + n)−K :

‖xT(Ũk,s − PUk,s
Ũk,s)‖ ≤3

√
2

(b+ 1)2

(b− 1)2
‖xTU‖ η

√
s− k+ 1

min{δk−1, δs}
1{s−k+16=r}

+
4
√

2b2

(b− 1)2

√√√√ ∑
i∈Jk,sK,σi≤n2

γ2

σ2i
+

∑
i∈Jk,sK,σi>n2

16n

σ2i

and ∣∣∣xT(Ũk,s − PUk,s
Ũk,s)y

∣∣∣≤3
√

2
(b+ 1)2

(b− 1)2
‖xTU‖

η
√
‖y‖0

min{δk−1, δs}
1{s−k+16=r}

+
4
√

2b2

(b− 1)2

 ∑
i∈Jk,sK,σi≤n2

γ
|yi|
σi

+
∑

i∈Jk,sK,σi>n2

4
√
n

σi

 ,(12)

where γ = 9b2

(b−1)2
√
r(K + 7) log(N + n).

REMARK 2.12. When the focus is on comparing the linear (or bilinear) forms of Uk,s
and Ũk,s, in a manner analogous to Corollary 2.9, one can leverage the fact provided in
Proposition A.6 of [69]:

‖xT(Ũk,s −Uk,sO)‖ ≤ ‖xT(Ũk,s − PUk,s
Ũk,s)‖+ ‖xTUk,s‖‖ sin∠(Uk,s, Ũk,s)‖2
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and combine Theorems 2.3 and 2.11.
A natural extension is to consider entrywise control of the perturbation. By applying (12)

with the canonical vectors and using Proposition A.6 of [69], we obtain the following bound
under the matrix max-norm (which measures the largest absolute entry): with probability
1− (N + n)−C ,

‖Ũk,s −Uk,sO‖max .

√
r+ log(N + n)

min{δk−1, δs}
‖U‖2,∞ +

√
r log(N + n)

σs
+
‖E‖2

σ2s
‖Uk,s‖2,∞

(13)

for some orthogonal matrix O.

Building upon the proof of Theorem 12 and incorporating minor modifications, we obtain
the subsequent bounds. These describe the extent to which the dominant singular vectors
of the perturbed matrix, when weighted by their singular values, deviate from the original
subspace. The proof can be found in the supplementary material [69].

THEOREM 2.13 (Bounds on singular value-adjusted projection perturbation). Under the
assumptions of Theorem 2.10, the following holds with probability at least 1−40(N+n)−K :

‖Ũk,sD̃k,s − PUk,s
Ũk,sD̃k,s‖2,∞ ≤ 3

√
2

(b+ 1)2

(b− 1)2
‖U‖2,∞

ησk
√
s− k+ 1

min{δk−1, δs}
1{s−k+16=r}

+
4
√

2b2

(b− 1)2

√
γ2(s− k+ 1) + 16,

where γ = 9b2

(b−1)2
√
r(K + 7) log(N + n).

Comparing Ũk,sD̃k,s with Uk,sOD̃k,s, with respect to the choice of an orthogonal matrix
O, requires more analysis than the unweighted case in Corollary 2.9. Consider the top k-
singular subspaces for any 1≤ k ≤ r. We establish that for some O ∈Ok×k:

‖ŨkD̃k −UkOD̃k‖2,∞ ≤‖ŨkD̃k − PUk
ŨkD̃k‖2,∞

+ ‖Uk‖2,∞‖ sin∠(Uk, Ũk)‖
(
‖E‖+ σk+1‖ sin∠(Vk, Ṽk)‖

)
.(14)

The proof of (14) is provided in [69]. Consequently, the weighted case bounds follow from
combining Theorem 2.13 with Theorem 2.3. Of particular interest is the special case k = r,
which is crucial for our statistical applications. Here, (14) simplifies to:

‖ŨrD̃r −UOD̃r‖2,∞ ≤‖ŨrD̃r − PU ŨrD̃r‖2,∞ + ‖U‖2,∞‖ sin∠(U, Ũr)‖‖E‖.(15)

Prior works (e.g., Proposition 3 in [74]) have used an alternative formulation ‖ŨrD̃rO
T −

UD‖2,∞. In [69] (after the proof of (14)), we analyze their connections.
Combining (15) with Theorems 2.13 and 2.3 yields the following key result for our appli-

cations:

COROLLARY 2.14. Assume the setting of Theorem 2.10, where we set r0 = s = r and
k = 1, the following holds with probability at least 1− 40(N + n)−K :

min
O∈Or×r

‖ŨrD̃r −UOD̃r‖2,∞ ≤
72b4

(b− 1)4
r
√

(K + 7) log(N + n) + 2‖U‖2,∞
‖E‖2

σr
.
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The proof technique of Theorem 2.13 could be extended to bound the bilinear form
xT(Ũk,sD̃k,s − PUk,s

Ũk,sD̃k,s)y for arbitrary unit vectors x and y, similar to the analysis
in Theorem 2.11. However, we do not pursue this generalization in the present work.

REMARK 2.15. Our theoretical framework, while presented for noise matrices E with
i.i.d. centered Gaussian entries, extends naturally to more general settings. The underlying
methodology accommodates sub-Gaussian noise matrices through established random ma-
trix theory techniques, particularly isotropic local laws and concentration inequalities. The
detailed technical treatment of these extensions, including sub-Gaussian cases and more gen-
eral noise assumptions, will be addressed in forthcoming work.

3. Related Work. This section reviews recent developments in singular vector pertur-
bation theory and their connections to high-dimensional statistics and random matrix theory.

Classical and `2-Type Subspace Perturbation Results. Foundational results such as the
Davis–Kahan and Wedin sin Θ theorems [40, 71] provide classical `2-type perturbation
bounds for eigenvectors and singular subspaces. Several deterministic extensions refine or
generalize these results. Yu, Wang, and Samworth [75] replace empirical gaps with popula-
tion gaps in the Frobenius norm setting. Vu and Lei [68] offer a variational form applicable
to unaligned subspaces. Cai and Zhang [29] and Luo, Han, and Zhang [56] further generalize
to unbalanced dimensions and Schatten-q norm bounds, respectively. Zhang and Zhou [76]
give Frobenius norm bounds for closely related matrix pairs, useful for spectral clustering.

In the stochastic regime, Wang [70] analyzes the non-asymptotic distribution of singu-
lar vectors under Gaussian noise. Allez and Bouchaud [5] study eigenvector dynamics in
symmetric matrices with Brownian motion noise. Benaych-Georges, Enriquez, and Michaïl
[15] analyze a perturbative expansion for eigenvector coordinates in symmetric matrices with
stochastic noise. Zhong [77] develops a Rayleigh–Schrödinger-type expansion to study an-
gular perturbations of leading eigenvectors in symmetric low-rank plus noise models.

`∞ and `2,∞-Type Subspace Perturbation Results. Recent works have increasingly focused
on more refined, entrywise and row-wise perturbation bounds, which offer localized guaran-
tees particularly useful in applications such as submatrix localization and community detec-
tion. A foundational contribution in this direction is due to Fan, Wang, and Zhong [45], who
derive `∞ perturbation bounds under incoherence conditions on the low-rank signal matrix.
Building on this idea, a series of works [1, 2, 20, 27, 36, 73, 74] develop increasingly sharp
`∞ and `2,∞ bounds using leave-one-out techniques tailored to various noise models and
matrix structures.

Abbe, Fan, Wang, and Zhong [2] establish `2,∞ perturbation bounds for symmetric low-
rank plus noise matrices with sub-Gaussian noise. This is further extended by Abbe, Fan,
and Wang [1], who provide a comprehensive analysis of `2,p norms in the context of hol-
lowed PCA. Chen, Fan, Ma, and Wang [36] generalize the analysis to asymmetric transition
matrices, while Lei [53] considers more intricate dependence structures in the noise. Zhong
and Boumal [78] obtain `∞ bounds for the leading eigenvector in the phase synchronization
model, using tools from semidefinite programming. Bhardwaj and Vu [20] propose a stochas-
tic analogue of the Davis–Kahan theorem that yields `∞ bounds for both eigenvectors and
singular vectors under general noise. More recently, Yan and Wainwright [74] introduce a
novel expansion technique that yields sharp `2,∞ bounds and distributional characterizations
of the estimation error, refining earlier results by Yan, Chen, and Fan [73]. Agterberg, Lub-
berts, and Priebe [4] also contribute by analyzing heteroskedastic noise and deriving Berry–
Esseen-type results for entrywise estimation of singular vectors.

Several works investigate perturbation of linear and bilinear forms involving singular vec-
tors. Koltchinskii and Xia [52] derive concentration bounds for such forms, later extended to
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tensor settings by Xia and Zhou [72]. Cape, Tang, and Priebe [32] provide `2,∞ bounds for
structured matrices, and Eldridge, Belkin, and Wang [43] use a Neumann series expansion to
control entrywise deviations. Li, Cai, Poor, and Chen [54] propose de-biased estimators for
projected eigenvectors under mild eigengap assumptions. Recent works [3, 38] explore this
regime further, especially when eigen-gaps are small or scale with noise.

Comprehensive insights into the `2 and `∞ analyses of current perturbation results and
their practical implications are available in the survey [35].

Connections to Random Matrix Theory. Random matrix theory offers asymptotic insights
into the spectral behavior of low-rank plus noise models. The BBP phase transition [9] de-
scribes a critical threshold for the emergence of outlier eigenvalues and eigenvector local-
ization. Subsequent studies [8, 10, 12–14, 16–19, 23, 33, 34, 42, 44, 62] explore the fine
behavior of extreme eigenvalues and eigenvectors across different regimes and ensembles.
While these results are typically asymptotic and ensemble-specific, they inform the design
and understanding of non-asymptotic perturbation techniques used in this work.

The selection of references cited herein represents a snapshot of a rapidly advancing field
and is not intended to be exhaustive.

4. Discussions. This section summarizes the key contributions of this work, and exam-
ines the lower bounds and the role of rank r in our perturbation bounds.

4.1. Optimality of our results. Our operator norm bound in Theorem 2.1 improves upon
prior results, notably [60], in its dependence on the signal rank r. In particular, when k = 1,
we show that with probability 1− (N + n)−C ,

(16) sin∠(u1, ũ1) .

√
r+ log(N + n)

δ1
+
‖E‖
σ1

.

This bound is conjectured to be near-optimal, up to constant factors. First, the necessity
of the second term in (16) is supported by a high-probability lower bound established in
[61, Theorem 3], which shows that max{sin∠(u1, ũ1), sin∠(v1, ṽ1)} & ‖E‖

σ1
. Second, the

first term of order
√
r+ log(N + n)/δ1 merits further attention. A line of work including

[27, 29, 35, 36, 38, 54] establishes minimax lower bounds for singular subspace estimation.
In particular, [38, Theorem 3] shows that, under Gaussian noise, any estimator must incur
error at least of order 1/δ1. This confirms the necessity of the 1/δ1 scaling in our bound.

To better understand the role of r, we conduct simulations varying r and plot the empirical
distribution of sin∠(u1, ũ1). The left panel of Figure 1 shows that the distribution depends on
the rank r, while the right panel demonstrates its sensitivity to the matrix dimensions, which
controls the noise level ‖E‖ �

√
n. Although a matching lower bound capturing the full√

r dependence is not currently known, we denote the unknown scaling factor as f(r) and
empirically investigate its behavior in the supplementary material. These simulations suggest
a sublinear but non-negligible scaling with r, with

√
r emerging as a plausible candidate.

For the `∞ bound, we observe that

min
s∈{±1}

‖u1 − sũ1‖∞ ≥ min
s∈{±1}

1√
N
‖u1 − sũ1‖ ≥

1√
N

sin∠(u1, ũ1).

Combining the above discussion, we expect the following lower bound:

min
s∈{±1}

‖u1 − sũ1‖∞ &
1√
N

f(r)

δ1
+

1

σ1
.
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On the other hand, under the incoherence assumption ‖U‖max . 1√
N

, our bound in Corol-
lary 2.9 (with τ = 1) gives with high probability

min
s∈{±1}

‖u1 − sũ1‖∞ ≤
1√
N

√
r
√
r+ log(N + n)

δ1
+

√
r log(N + n)

σ1
.

The gap in r-dependence between the upper and lower bounds is at most a factor of r (up to
logs), suggesting near-optimal rank scaling in our entrywise bound.
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FIG 1. CDF plots of sin∠(u1, ũ1) across 300 trials. The signal matrix A ∈ Rn×n has rank r. The noise matrix
E has i.i.d. standard Gaussian entries. We set the largest singular value of A as σ1 = 100. Left: We set n= 400,
δ1 = 20 and σ2 = . . .= σr = 80, varying r = 5,20,60,100,200. Right: We fix r = 20, δ1 = 40, and σ2 = . . .=
σr = 60, and vary the dimension n= 400,800,1200.

The supplementary material [69] provides extensive numerical validation of our bounds.
While these experiments confirm the tightness of rank dependence in angular and Frobenius
norm bounds, they also reveal opportunities for improvement. Specifically, the `∞ and `2,∞
bounds might be refined under incoherence assumptions, and the operator norm bounds could
be slightly improved through refined analysis.

4.2. Contribution of This Work. This paper establishes near-optimal, non-asymptotic
perturbation bounds for singular vectors in the low-rank matrix denoising model, under the
assumption that the noise matrix has i.i.d. Gaussian entries. Building on the framework of
[61], which introduced the isotropic local law into singular vector analysis, we extend and
refine the results in several important directions.

First, we obtain tighter perturbation bounds under milder assumptions by sharpening the
decomposition of error terms and enhancing the control of resolvent expansions. Most no-
tably, we eliminate a restrictive condition in [61], which required distinct singular values
among σk, · · · , σs to be separated by a distance of order r2

√
log(N + n). This restrictive

spectral gap condition, often challenging to verify in practice, is no longer necessary in our
theorem through our refined analysis of perturbed singular value locations.

Second, we provide a more detailed investigation of the role of signal rank r, establishing
bounds with improved r-dependence. In several key regimes, this dependence is shown to be
near-optimal, with our numerical experiments supporting its necessity. Our analysis addresses
key limitations of previous works: while [60] provided bounds for general noise without
utilizing the isotropic local law, it included an extra additive term that we eliminate here under
Gaussian noise. Similarly, [61], though introducing the isotropic local law for Gaussian noise,
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focused primarily on operator norm bounds without optimizing rank scaling. The current
framework thus achieves sharper results by employing a more delicate decomposition of the
perturbation terms and sharper control over resolvent expansions.

Our bounds are formulated under a wide class of norms, including unitarily invariant
norms, the `2,∞ norm, and a weighted `2,∞ norm that captures heterogeneity in the sig-
nal structure. This weighted bound is especially powerful in statistical applications, where
standard norm-based bounds often fail to achieve optimal practical performance. We illus-
trate its utility through two well-studied problems–Gaussian mixture model and submatrix
localization–in Section 5. These examples demonstrate how our general perturbation bounds
yield concise and effective guarantees for important statistical tasks.

Finally, the isotropic local law framework we adopt proves to be both flexible and ro-
bust. It accommodates various matrix norms and opens the door to further extensions beyond
Gaussian noise.

5. Applications.

5.1. Gaussian mixture model. The Gaussian mixture model (GMM) is a type of proba-
bilistic model often used for clustering and density estimation. It assumes that the observed
data are generated from a mixture of several Gaussian distributions, each characterized by a
mean vector and a covariance matrix.

Consider observed data X = (X1, · · · ,Xn) ∈ Rp×n, where each Xi is a p-dimensional
vector. We assume there are k distinct clusters represented by the centers θ1, · · · , θk ∈ Rp.
Denote [n] := {1, · · · , n}. Let z = (z1, · · · , zn)T ∈ [k]n be the latent variable that represents
the true cluster labels for each observation Xi. The model assumes that each Xi is generated
as a result of adding a Gaussian noise term εi to its corresponding center θzi , with εi’s being
i.i.d. N (0, Ip). In particular, Xi = θzi + εi and we denote

X = E(X) +E.(17)

The goal of the GMM is to classify the observed data X into k clusters, and recover the
latent variable z. Let z̃ be the output of a clustering algorithm for the GMM and the accuracy
of this algorithm can be evaluated using the misclassification rate, defined as:

M(z, z̃) :=
1

n
min
π∈Sk
|{i ∈ [n] : zi 6= π(z̃i)}| ,

where Sk is the set of all permutations of [k].
To solve the clustering problem, typically, more satisfying outcomes can be obtained

by beginning with an initial estimate and then refining it with other tools like iteration or
semidefinite programming (SDP). However, our discussion will focus exclusively on the ap-
plication of simple spectral methods to illustrate perturbation results. Such methods have
recently received considerable attention in the literature, as seen in [1, 29, 55, 76], among
others. Notably, the case of a two-cluster GMM with centers ±µ for a fixed vector µ has
been extensively studied in [1, 29].

In the context of a general k-cluster framework, it is important to recognize insights from
[55] that establish spectral clustering as optimal for GMM. Our main goal is to show that the
application of our perturbation results provides a succinct and effective proof for examining
the theoretical performance of spectral algorithms.

Denote the minimum distance among centers as

∆ := min
j,l∈[k]:j 6=l

‖θj − θl‖.
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When the separation between cluster centers, denoted by ∆, is sufficiently large, distance-
based clustering methods become particularly commendable.

The principle of spectral clustering is elegantly simple. Consider the SVD of E(X) =
UΣV T, where Σ is a k× k diagonal matrix. If the rank r of E(X) is less than k, then Σ will
have k−r zero diagonal entries. The matrices U and V respectively consist of k orthonormal
vectors that contain the left and right singular vectors of E(X). Let us denote (UTE(X))j
the columns of UTE(X) ∈ Rk×n. We can demonstrate, as elaborated in [69], that for any
columns θi and θj of E(X) = (θz1 , · · · , θzn),

‖θi − θj‖= ‖(UTE(X))i − (UTE(X))j‖.

This indicates that the columns of UTE(X) = ΣV T preserve the geometric relationship
among the centers.

Consider the SVD of X = Ũ Λ̃Ṽ T and we use the previously defined notations Ũs, Λ̃s, Ṽs.
The crux of the analysis lies in proving that, with high probability, the following holds:

max
1≤j≤n

‖(ŨTk X)j − (UTE(X))j‖<
1

5
∆.(18)

If this is the case, then performing clustering based on the distances among the columns of
ŨTr X will, with high probability, successfully recover the correct cluster labels. In light of
the preceding analysis, we hereby present the following algorithm:

Algorithm 1 Spectral algorithm for GMM
Input: data matrix X ∈Rn×p and cluster number k.
Output: cluster labels z̃ ∈ [k]n.
Step 1. Perform SVD on X and denote Ũk ∈ Rp×k the singular vector matrix composed of the leading k left
singular vectors of X .
Step 2. Perform k-means clustering on the columns of ŨT

k X .

Algorithm 1 is identical to the algorithm proposed in [55] and [76]. This SVD-based al-
gorithm has been widely adopted to address a variety of well-known problems in computer
science and statistics, including the hidden clique, hidden bisection, hidden coloring, and
matrix completion, among others (see for instance [55, 67] and references therein for more
discussion).

The use of k-means clustering in Step 2 of Algorithm 1 is not a crucial component. The key
requirement is to establish the inequality in (18); once this is achieved, alternative distance-
based clustering algorithms may be employed in place of k-means.

For the output z̃ of Algorithm 1, we could show the following result:

THEOREM 5.1. Consider the GMM (17) with cluster number k. Let σmin > 0 be the
smallest singular value of E(X). Denote the smallest cluster size by cmin. Let L > 0 and
assume (

√
n+
√
p)2 ≥ 32(L+ 7) log(n+ p) + 64(log 9)k. If

∆≥max

{
40(
√
n+
√
p)

√
cmin

,1800k
√

(L+ 7) log(n+ p)

}
,(19)

σmin ≥ 40(
√
n+
√
p) + 3.8× 104k

√
2(log 9)k+ (L+ 7) log(n+ p),

then EM(z, z̃)≤ 40(n+ p)−L.
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The proof of Theorem 5.1 is a direct application of Corollary 2.14 and is detailed in [69].
By setting L= (n+ p)/ log(n+ p), for instance, we achieve an exponential rate of misclas-
sification.

Löffler, Zhang and Zhou [55] have demonstrated that for the output z̃ of Algorithm 1,
provided that ∆� k10(

√
n+
√
p)√

cmin
, the following bound holds:

EM(z, z̃)≤ exp
(
−(1− o(1))∆2/8

)
+ exp(−0.08n).(20)

More recently, Zhang and Zhou [76] have developed another innovative approach to analyze
the output z̃ and obtained the same asymptotic exponential error rate (20) for the GMM,
assuming

cmin ≥ 100k3 and ∆� k3(n+ p)/
√
n

√
cmin

.

Additionally, [76, Theorem 3.1] analyzes the estimator z̃ for the sub-Gaussian mixture model.
For the output z̃ of Algorithm 1, where in Step 2 the selection is made for Ũr with r =
rank(E(X)) (implying the use of exactly all r singular vectors of E(X)), an exponential
error rate is attainable when

cmin ≥ 10k, ∆>C

√
k(
√
n+
√
p)

√
cmin

and σr >C(
√
n+
√
p)

for some C > 0. Abbe, Fan, and Wang [1] also explored the sub-Gaussian mixture model,
employing the eigenvectors of the hollowed Gram matrixH(X>X) for clustering. Their ap-
proach leverages the `p perturbation results formulated in their paper but necessitates stricter
conditions on the number of clusters, their sizes, and the collinearity of the cluster centers.

It is noteworthy that in the context of the GMM, results in [55] and [76] do not require
any assumptions regarding the smallest singular value σmin, due to the exploitation of the
Gaussian nature of the noise matrix E. Our Theorem 5.1 aligns with the findings for the
sub-Gaussian mixture model in [76]. Since our proof does not fully utilize the Gaussianality,
we only employ the rotation invariance property to simplify the proof of isotropic local law,
as given in Lemma 6.2. Our findings can be extended to scenarios where the entries of E
are sub-Gaussian random variables. The extension to sub-Gaussian noise can be achieved
through standard random matrix techniques, as discussed in Remark 2.15.

5.2. Submatrix localization. The general formulation of the submatrix localization or re-
covery problem involves locating or recovering a k× s submatrix with entries sampled from
a distribution P within a larger m× n matrix populated with samples from a different dis-
tribution Q. In particular, when P and Q are both Bernoulli or Gaussian random matrices,
the detection and recovery of the submatrix have been extensively studied. These investiga-
tions span various domains, including hidden clique, community detection, bi-clustering, and
stochastic block models (see [6, 7, 11, 20, 24–26, 28, 37, 39, 41, 46, 47, 51, 57–59, 67] and
references therein).

The task of recovering a single submatrix has been intensively explored (see for instance,
[26, 28, 37, 47, 58, 67] and references therein), but research on locating a growing number of
submatrices is comparatively limited [28, 37, 39]. In this section, we focus on the recovery
of multiple (non-overlapping) submatrices within the model of size m× n:

X =M +E,(21)
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where the entries of the noise matrix E are i.i.d. standard Gaussian random variable. The
signal matrix is given by

M =

k∑
i=1

λi1Ri
1T
Ci
,

where {Ri}ki=1 are disjoint subsets in [m] and {Ci}ki=1 are non-overlapping subsets in [n].
We denote 1Ri

as a vector in Rm with entries equal to 1 for indices in the set Ri and 0
elsewhere, and 1Ci

is defined analogously. Denote |Ri| = ri and |Ci| = ci. Assume λi 6= 0
for all 1≤ i≤ k. The goal is to discover the pairs {(Ri,Ci)}ki=1 from the matrix X .

Observe that the SVD of M is given by M =
∑k

i=1 σiuiv
T
i := UDV T, where

σi := |λi|
√
rici, ui := sgn(λi)

1Ri√
ri
, vi :=

1Ci√
ci
.

The columns ofU and V are composed of ui’s and vi’s respectively andD = diag(σ1, · · · , σk).
Note that |Xij − Mij | = |Eij | and with high probability, maxi,j |Eij | .

√
logn. If

mini,j |Mij | = min1≤l≤k |λl| &
√

logn and is greater than maxi,j |Eij |, a simple element-
wise thresholding proves effective for identifying the submatrices.

In general, as in Section 5.1, we apply the same spectral clustering method to locate the
submatrices. Denote C0 := [n] \ ∪ki=1Ci the set of isolated column indices with size |C0|=
c0; define R0 and its size r0 analagouly. Let (UTM)j represent the columns of UTM . From
UTM =DV T and the definitions of D and V , it follows that (UTM)j has only 1 non-zero
entry λl

√
rl if j ∈Cl for some l ∈ [k] and it is a zero vector if j ∈C0. In particular, if i, j ∈ [n]

belong to the same Cl for 0 ≤ l ≤ k, it holds that (UTM)i = (UTM)j . For i, j ∈ [n] from
different submatrices, we have that

min
i∈Cl,j∈Cs,
0≤l 6=s≤k

‖(UTM)i − (UTM)j‖= min
1≤i≤k

|λi|
√
ri := ∆R.

In particular, if ∆R is sufficiently large, distance-based clustering can effectively be adapted
to identify the column index sets of the submatrices.

Let ŨD̃Ṽ T be the SVD of X =M +E and consider ŨT
k X . The main objective is to show

that, with high probability,

max
1≤j≤n

‖(ŨT
k X)j − (UTM)j‖<

1

5
∆R.

Achieving this allows us to employ a standard clustering approach, such as k-means, based on
distance to classify the columns of ŨT

k X and thus recover the column index subsets {Ci}ki=0.
Similarly, to identify the row index subsets {Ri}ki=0, we utilize the parameter

∆C := min
1≤i≤k

|λi|
√
ci

and apply k-means clustering to the rows of XṼr . We propose the following algorithm:
Define

σmin := min
1≤i≤k

|λi|
√
rici, rmin := min

0≤i≤k
ri, cmin := min

0≤i≤k
ci.

THEOREM 5.2. Consider the submatrix localization model (21) with k submatrices. Let
L> 0 and assume (

√
n+
√
p)2 ≥ 32(L+ 7) log(n+ p) + 64(log 9)k. Given that

∆R ≥max

{
40(
√
m+

√
n)

√
rmin

,1800k
√

(L+ 7) log(m+ n)

}
,
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Algorithm 2 Spectral algorithm for submatrix localization
Input: data matrix X ∈Rm×n and submatrix number k.
Output: column index subsets {C̃i}ki=0 and row index subsets {R̃i}ki=0.
Step 1. Perform SVD on X and denote Ũk ∈ Rm×k and Ṽk ∈ Rn×k the singular vector matrices composed
of the leading k left and right singular vectors of X respectively.
Step 2. Perform (k+1)-means clustering on the columns of ŨT

k X . Output the column index subsets {C̃i}ki=0.

Step 3. Perform (k+ 1)-means clustering on the rows of XṼr . Output the row index subsets {R̃i}ki=0.

∆C ≥max

{
40(
√
m+

√
n)

√
cmin

,1800k
√

(L+ 7) log(m+ n)

}
,

σmin ≥ 40(
√
m+

√
n) + 3.8× 104k

√
2(log 9)k+ (L+ 7) log(m+ n),

Algorithm 2 succeeds in finding R̃i = Ri and C̃i = Cπ(i), 0≤ i≤ k for a bijection π : [k +

1]→ [k+ 1] with probability at least 1− 40(m+ n)−L.

The proof of Theorem 5.2 parallels that of Theorem 5.1, and therefore we omit the details.
Previous research on the model (21) of multiple submatrix localization includes notable

contributions such as those found in [28, 37, 39]. Chen and Xu [37] examine this problem
across different regimes, each corresponding to unique statistical and computational com-
plexities. They focus on scenarios where all k submatrices are identically sized at KR ×KC

and share a common positive value λi = λ. Their analysis of the Maximum Likelihood Es-
timator (MLE), a convexified version of MLE, and a simple thresholding algorithm address
the challenges specific to hard, easy, and simple regimes, respectively. In the work of Dadon,
Huleihel and Bendory [39], the primary objective is to explore the computational and statisti-
cal limits associated with the detection and reconstruction of hidden submatrices. Under the
same setting as [37] in the context of the multiple submatrix recovery problem, the authors
introduce a MLE alongside an alternative peeling estimator and investigate the performance
of these estimators.

Our Algorithm 2 is identical to Algorithm 3 presented in Cai, Liang and Rakhlin’s paper
[28]. The assumptions laid out in [28] include ri �KR, ci �KC , λi � λ for all 1 ≤ i ≤ k
and min{KR,KC}& max{

√
m,
√
n}. Given that

λ&

√
k

min{
√
KR,
√
KC}

+ max

{√
logm

KC
,

√
logn

KR

}
+

√
m+

√
n√

KRKC
,(22)

the authors of [28] demonstrate that Algorithm 2 successfully recovers the true submatrix
row and column index sets with probability at least 1 −m−c − n−c − 2 exp(−c(m + n)).
The entries of the noise matrix E in [28] are assumed to be i.i.d zero-mean sub-Gaussian
random variables.

While our method does not require that all row or column index sets have the same order
of sizes, in the special case where ri � KR, ci � KC , and λi � λ for all 1 ≤ i ≤ k, and
furthermore r0 &KR and c0 &KC , our analysis indicates that if

λ&
k
√

log(m+ n)

min{
√
KR,
√
KC}

+

√
m+

√
n

min{KR,KC}
,(23)

then Algorithm 2 successfully recovers the submatrix index subsets with probability at least
1 − (m + n)−c. It should be emphasized that the condition in (23) is more stringent than
that in (22), a difference that becomes particularly pronounced in cases where KR and KC

are highly unbalanced. An interesting direction for future research would be to improve our
perturbation bounds to accommodate cases with unbalanced matrix dimensions.
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6. Basic tools and proof overview.

6.1. Basic tools. This section presents the basic tools necessary for the proofs of our
main results, many of which build upon the previous work by O’Rourke, Vu and the author
[61].

We start with the standard linearization of the perturbation model (1). Consider the (N +
n)× (N + n) matrices

A :=

(
0 A
AT 0

)
and E :=

(
0 E
ET 0

)
in block form. Define

Ã :=A+ E .

The non-zero eigenvalues of A are given by λj = σj and λj+r = −σj for 1 ≤ j ≤ r. Then
uj := 1√

2
(uTj , v

T
j )T and uj+r := 1√

2
(uTj ,−vTj )T for 1 ≤ j ≤ r are their corresponding or-

thonormal eigenvectors. The spectral decomposition of A is

(24) A= UDUT,

where U := (u1, . . . ,u2r) and D := diag(λ1, · · · , λ2r). It follows that UTU = I2r . Similarly,
the non-zero eigenvalues of Ã are denoted by λ̃j = σ̃j and λ̃j+min{N,n} =−σ̃j for 1≤ j ≤
min{N,n}. The eigenvector corresponding to λ̃j is denoted by ũj and is formed by the right
and left singular vectors of Ã.

For z ∈C with |z|> ‖E‖, we define the resolvent of E as

G(z) := (zI −E)−1.

Often we will drop the identity matrix and simply write (z − E)−1 for this matrix. We use
Gij(z) to denote the (i, j)-entry of G(z).

The key observation is that G(z) can be approximated by a diagonal matrix. Consider a
random diagonal matrix

(25) Φ(z) :=

(
1

φ1(z)
IN 0

0 1
φ2(z)

In

)
,

where

(26) φ1(z) := z −
∑

t∈JN+1,N+nK

Gtt(z), φ2(z) := z −
∑

s∈J1,NK

Gss(z).

Using the Schur complement, the Green function G(z) of E is composed of four blocks:
the Green function G1(z) of EET , the Green function G2(z) of ETE, and ETG1(z) and
G1(z)E (with minor modifications). The approximation Φ(z) is motivated by the quadratic
equations satisfied by the Stieltjes transforms of the spectral distributions of EET and ETE,
similar to how the Stieltjes transform of the semi-circle law satisfies a quadratic equation in
the symmetric case.

By setting

Iu :=

(
IN 0
0 0

)
and Id :=

(
0 0
0 In

)
,

one can rewrite (26) as

φ1(z) = z − trIdG(z), φ2(z) = z − trIuG(z).(27)
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By elementary linear algebra (the proof deferred to [69]), it can be verified that

φ1(z) = φ2(z)−
1

z
(n−N).(28)

From the definition of U in (24), it is easy to verify that

UTΦ(z)U =

(
α(z)Ir β(z)Ir
β(z)Ir α(z)Ir

)
,(29)

where we denote

α(z) :=
1

2

(
1

φ1(z)
+

1

φ2(z)

)
and β(z) :=

1

2

(
1

φ1(z)
− 1

φ2(z)

)
for notational brevity. It follows that

‖UTΦ(z)U‖= max

{
1

|φ1(z)|
,

1

|φ2(z)|

}
.(30)

The next lemma offers bounds for the resolvent and the functions φi(z)’s. The proof follows
similarly to that of Lemma 16 in [61] and is omitted for brevity.

LEMMA 6.1. On the event where ‖E‖ ≤ 2(
√
N +

√
n),

‖G(z)‖ ≤ b

b− 1

1

|z|
and

(31)
(

1− 1

4b(b− 1)

)
|z| ≤ |φi(z)| ≤

(
1 +

1

4b(b− 1)

)
|z| for i= 1,2

for any z ∈C with |z| ≥ 2b(
√
N +

√
n) and for any k ∈ J1,N + nK.

Consequently, by Lemma 6.1, we obtain

max{| trG(z)|, | trIuG(z)|, | trIdG(z)|} ≤ (N + n)‖G(z)‖ ≤ b

b− 1

N + n

|z|
.(32)

The subsequent isotropic local law is derived using a proof similar to that of [61, Lemma
27]. For completeness, we briefly describe the proof in the supplementary material [69].

LEMMA 6.2. Let K > 0 and assume (
√
N +

√
n)2 ≥ 32(K + 1) log(N + n). For any

unit vectors x,y ∈RN+n and for any z ∈C with |z| ≥ 2b(
√
N +

√
n),∣∣xT (G(z)−Φ(z))y

∣∣≤ 5b2

(b− 1)2

√
(K + 1) log(N + n)

|z|2
(33)

with probability at least 1− 9(N + n)−(K+1).

Recall

η =
11b2

(b− 1)2

√
(K + 7) log(N + n) + (log 9)r.

Denote

D := {z ∈C : 2b(
√
N +

√
n)≤ |z| ≤ 2n3}.

Using the previous lemma and a standard ε-net argument, we obtain the following result that
is analogous to [61, Lemma 9]:
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LEMMA 6.3. Under the assumptions of Theorem 2.3, one has

max
z∈D
|z|2

∥∥UT (G(z)−Φ(z))U
∥∥≤ η

with probability at least 1− 9(N + n)−K .

Lemma 6.3 improves the rank r-dependence in the bound of [61, Lemma 9]. The proof of
Lemma 6.3 is included in [69]. For the case 2b(

√
N +

√
n)> 2n3 where D is empty, G(z)

can be approximately be even simpler matrices (see Lemma 6.5 below).
The following result on the location of perturbed singular values is obtained using Lemma

6.3. Consider the random function

(34) ϕ(z) := φ1(z)φ2(z),

where φ1(z) and φ2(z) are defined in (26). Define the auxiliary functions for b≥ 2:

ξ(b) := 1 +
1

2(b− 1)2
and χ(b) := 1 +

1

4b(b− 1)
.

Define a set in the complex plane in the neighborhood of any σ ∈R by

(35) Sσ := {w ∈C : | Im(w)| ≤ 20χ(b)ηr,σ− 20χ(b)ηr ≤Re(w)≤ χ(b)σ+ 20χ(b)ηr} .

THEOREM 6.4 (Singular value locations). Let A and E be N ×n real matrices, where A
is deterministic and the entries ofE are i.i.d. standard Gaussian random variables. AssumeA
has rank r ≥ 1. Let K > 0 and b≥ 2. Denote η := 11b2

(b−1)2
√

2(log 9)r+ (K + 7) log(N + n).

Assume (
√
N +

√
n)2 ≥ 32(K + 7) log(N + n) + 64(log 9)r. Let 1 ≤ r0 ≤ r such that

σr0 ≥ 2b(
√
N +

√
n) + 80bηr and δr0 ≥ 75χ(b)ηr. Consider any 1≤ k ≤ s≤ r0 satisfying

min{δk−1, δs} ≥ 75χ(b)ηr. For any j ∈ Jk, sK, there exists j0 ∈ Jk, sK such that σ̃j ∈ Sσj0
,

and

|ϕ(σ̃j)− σ2j0 | ≤ 20ξ(b)χ(b)ηr (σ̃j + χ(b)σj0)(36)

with probability at least 1− 10(N + n)−K .

Our Theorem 6.4 extends the analysis of Theorem 12 in [61] in an important direction by
removing the singular value separation requirement. This improvement stems from a careful
refinement of the theoretical framework, detailed in the supplementary material [69].

The next result suggests that when |z| is large, the resolvent G(z) can be approximated by
simpler matrices. The proof is analogous to that of Lemma 17 in [61], and is omitted.

LEMMA 6.5. On the event where ‖E‖ ≤ 2(
√
N +

√
n),∥∥∥∥G(z)− 1

z
IN+n

∥∥∥∥≤ b

b− 1

‖E‖
|z|2

and
∥∥∥∥G(z)− 1

z
IN+n −

E
z2

∥∥∥∥≤ b

b− 1

‖E‖2

|z|3

for any z ∈C with |z| ≥ 2b(
√
N +

√
n).

LEMMA 6.6 (Lemma 13 from [61]). Under the assumptions of Theorem 2.3,

max
l∈J1,r0K:σl>

1

2
n2
|σ̃l − σl| ≤ ηr

with probability at least 1− (N + n)−1.5r
2(K+4).

The next result provides a non-asymptotic bound on the operator bound of ‖E‖.
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LEMMA 6.7 (Spectral norm bound; see (2.3) from [63]). Let E be an N × n matrix
whose entries are independent standard Gaussian random variables. Then

‖E‖ ≤ 2(
√
N +

√
n)

with probability at least 1− 2e−(
√
N+
√
n)2/2.

6.2. Proof overview. In this section, we outline our proof strategy, which leverages tech-
niques from random matrix theory, particularly the resolvent method, to analyze the eigen-
values and eigenvectors of the symmetric matrices A and Ã=A+ E in Section 6.1.

At the heart of our analysis is the isotropic local law (Lemma 6.2), which asserts that the
resolvent G(z) = (zI − E)−1 can be approximated by a simpler matrix Φ(z). This approxi-
mation streamlines complex calculations involving G(z) and is a technique commonly used
to study extreme eigenvalues and eigenvectors in random matrix theory, as seen in, for in-
stance, [12, 13, 22, 50]. Our work diverges from these prior approaches by selecting Φ(z)
as a random matrix derived from G(z) itself, which better suits the finite sample context,
compared to the deterministic approximations used in previous studies that rely on Stieltjes
transforms in the asymptotic regime.

Building upon the isotropic local law, we determine the singular value locations of Ã
in Theorem 6.4 and achieve the control of

∥∥UT (G(z)−Φ(z))U
∥∥ as given in Lemma 6.3.

These instruments have been previously explored in the previous work by O’Rourke, Vu and
the author [61]. In this paper, we refine these estimations and ease the conditions in [61].
Furthermore, we deploy these refined tools to derive a variety of new perturbation bounds.

To illustrate the key ideas behind our perturbation bounds, we simply focus on the largest
eigenvector ũ1 of Ã. While a complete analysis requires considering both ũ1 and ũr+1 (as
they jointly involve the largest singular vectors u1 and v1), we temporarily consider only
ũ1 for clarity. We emphasize that the calculation presented below is simplified to convey the
main idea. In the actual proof, we work with all eigenvectors uj with j 6= 1, r+1 and j ∈ [2r]
simultaneously, leading to a more comprehensive analysis involving the block structure of Φ.

We start with the decomposition

ũ1 = (u1u
T
1 )ũ1 +P1ũ1 +Qũ1,(37)

where P1 = U1UT
1 and U1 is the matrix of eigenvectors of A excluding u1. Meanwhile, Q

is the orthogonal projection matrix onto the null space of A. The challenge in establishing
perturbation bounds for ũ1 lies in quantifying the latter two terms on the right-hand side of
(37).

First, for the `2 analysis, we aim to bound sin∠(u1, ũ1). By taking the Frobenius norm on
both sides of (37), we obtain

1 = cos2∠(u1, ũ1) + ‖P1ũ1‖2 + ‖Qũ1‖2.

Rearranging the terms yields

sin2∠(u1, ũ1) = ‖P1ũ1‖2 + ‖Qũ1‖2.

A straightforward linear algebra argument allows us to bound ‖Qũ1‖ by the noise-to-signal
ratio ‖E‖/σ1. The main task is then to establish a bound for ‖P1ũ1‖ ≤ ‖UT

1 ũ1‖, which
effectively comes down to bounding |uT

j ũ1| for j 6= 1. We explain how to achieve this bound
below.

From the equation Ãũ1 = (A+ E)ũ1 = λ̃1ũ1, we can express ũ1 as

ũ1 = (λ̃1I −E)−1Aũ1 =G(λ̃1)Aũ1
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and further rewrite it as

ũ1 = Φ(λ̃1)Aũ1 +
(
G(λ̃1)−Φ(λ̃1)

)
Aũ1.

Hence, for j 6= 1, we have

(38) uT
j ũ1 = uT

j Φ(λ̃1)Aũ1 + uT
j

(
G(λ̃1)−Φ(λ̃1)

)
Aũ1

Calculations similar to those in (29) indicate that the first term on the right-hand side of (38),
uT
j Φ(λ̃1)Aũ1, is exactly λjα(λ̃1)u

T
j ũ1 (omitting the term containing ur+j). We continue

from (38) to get (
1− λjα(λ̃1)

)
uT
j ũ1 ≈ uT

j

(
G(λ̃1)−Φ(λ̃1)

)
Aũ1.

To control |uT
j ũ1|, we apply Theorem 6.4 to analyze the coefficient 1−λjα(λ̃1) that precedes

it. Lemma 6.3 is applied to manage the term on the right-hand side.
Next, for the `∞ analysis, from (37), we obtain

‖ũ1 − (u1u
T
1 )ũ1‖∞ ≤ ‖P1ũ1‖∞ + ‖Qũ1‖∞ ≤ ‖U‖2,∞‖UT

1 ũ1‖+ ‖Qũ1‖∞.

The bound for ‖UT
1 ũ1‖ has already been established in the preceding `2 analysis. The second

term, ‖Qũ1‖∞, can be bounded by considering the fact

Qũ1 =Q
(
G(λ̃1)−Φ(λ̃1)

)
Aũ1

and then applying Lemma 6.3.
These are the main ideas that we have incorporated in our proofs. Before concluding this

section, we would like to highlight that the results presented in this paper can be extended to
scenarios where the noise matrix E contains independent sub-Gaussian entries. This exten-
sion would rely on a lemma similar to Lemma 6.2, which can be demonstrated using the tools
provided by random matrix theory. However, due to the technical complexities involved, we
have chosen to reserve the discussion of this extension to sub-Gaussian cases for a forth-
coming paper. It remains a highly interesting direction to further establish these perturbation
bounds when the noise matrix E comprises heteroskedastic random variables. We believe
that new tools and insights, extending beyond the scope of the methods presented in this
paper, will be required to rigorously establish such extensions.
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SUPPLEMENTARY MATERIAL

Supplementary material to “Analysis of singular subspaces under random perturba-
tions"
In this supplementary material [69], we provide the detailed proofs of our main results, as
well as the proofs of basic tools related to them and some preliminary materials. Additionally,
[69] contains further discussions and numerical simulations that explore the sharpness of our
theoretical results.
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This file contains the detailed proofs of the theorems in the paper [13],
as well as those of basic tools related to them and numerical simulations.
Specifically, Section A presents simulation results that empirically explore
the sharpness of our perturbation bounds and examine their dependence on
the signal rank r. Section B provides preliminary information on matrix
norms (in Section B.1) and the distance between subspaces (in Section B.2).
The proofs of Theorems 2.3, 2.10, 2.11 and 2.13 can be found in Section C.
In Section D, the proofs of Theorems 2.6 and 2.7 are presented. The proof of
Theorem 5.1 is given in Section E. Proofs of (12), (13), Proposition B.6 and
(14) are compiled in Section F. Section G collects the proofs of Lemma 6.2
and Lemma 6.3. Finally, Section H, Section I and Section J include the proofs
of Lemma C.2, Theorem 6.4, and (28) and Proposition H.2, respectively.

A. Discussions and Simulations. This section presents numerical experiments that
evaluate the sharpness of our perturbation bounds, focusing specifically on how error scales
with signal rank r. Our simulations aim to assess the tightness of our bounds and identify
potential areas for improvement. We also compare our bounds with related results in the
literature.

A.1. Leading singular vector perturbations. In Section 4.1 of [13], we explored the opti-
mality of the leading singular vector bound. In particular, we established that with probability
1− (N + n)−C ,

(1) sin∠(u1, ũ1) .

√
r+ log(N + n)

δ1
+
‖E‖
σ1

.

We argued that the a high-probability lower bound should be in terms of

sin∠(u1, ũ1) &
f(r)

δ1
+
‖E‖
σ1

.

Here, we further investigate the precise form of f(r).
To examine whether a lower bound on sin∠(u1, ũ1) should scale as

√
r or follow a

different power law in r, we simulate the model Ã = A + E with various ranks r ∈
{50,55,60, . . . ,600} and compute the 10th percentile of sin∠(u1, ũ1) over 100 trials for
each r. The noise E has i.i.d. standard Gaussian noise. To assess potential scaling laws,
we compare three candidates (

√
r, r1/3, and log(r)) by fitting the empirical data via lin-

ear regression against each scaling term. Figure A.1 shows that the
√
r scaling provides the

strongest fit (coefficient of determination R2 = 0.9986, where R2 = 1 indicates perfect fit),
outperforming both r1/3 (R2 = 0.9939) and log(r) (R2 = 0.9675).

We now examine the `∞ norm bound, following the discussion Section 4.1 of [13]. Under
the incoherence assumption ‖U‖max . 1√

N
, Corollary 2.9 implies that with high probability

min
s∈{±1}

‖u1 − sũ1‖∞ .
1√
N

√
r
√
r+ log(N + n)

δ1
+

√
r log(N + n)

σ1
.(2)

1
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FIG 1. Empirical exploration of rank dependence in singular vector perturbation. For each rank r ∈
{50,55,60, . . . ,600}, we simulate 100 independent trials of a rank-r signal matrix A corrupted by Gaussian
noise and compute the 10th percentile of sin∠(u1, ũ1). We set n= 800. The singular values of A are given as
follows: σ1 = 150, σ2 = σ1 − 20 = 130 with δ1 = 20, and the remaining r − 2 nonzero singular values decay
linearly down to 120. The figure compares three scaling laws, e.g.,

√
r, r1/3, and log(r), via linear fits and R2

values, showing that
√
r provides the best empirical fit (R2 = 0.9986).

Based on the lower bound for sin∠(u1, ũ1), we expect

min
s∈{±1}

‖u1 − sũ1‖∞ &
1√
N

f(r)

δ1
+

1

σ1
,

with f(r) consistent with the angular lower bound.
We numerically explore this lower bound using the model Ã = A + E with parameters

n = 400, σ1 = 1000, σr = 950, and σ2 = σ1 − δ1 = 980 (δ1 = 20). Assume E has i.i.d.
standard Gaussian entries. For ranks r = 10,30, . . . ,350, we compute the 10th percentile
of mins∈{±1} ‖u1 − sũ1‖∞ over 100 trials. The singular vectors of A are drawn uniformly
from the Haar measure, ensuring incoherence. As shown in Figure 2, comparing different
scaling laws reveals that the

√
r-fit provides the best fit (R2 = 0.9965), outperforming both

r (R2 = 0.9591) and r1/3 (R2 = 0.9909). Additionally, a log-log regression estimates the
scaling as r0.567, close to the expected r0.5. These results suggest that `∞-norm perturbations
exhibit similar rank behavior as the `2 case and imply that we could potentially improve the
rank dependence in the first term of (2) by an extra

√
r factor.

Finally, we compare our results with existing bounds in related settings. For symmetric
matrix models with sub-gaussian noise, Zhong [16] analyzes the top eigenvector perturba-
tion sin∠(u1, ũ1). For low-rank signal matrices, they obtain a similar two-term upper bound
as (1), but require a stronger signal condition λ1 & n logn. Other works, such as [4, The-
orem 1], establish individual singular vector perturbation bounds under more general noise
assumptions, but their `2 and `∞ bounds exhibit less favorable dependence on the signal rank
r, even with additional constraints. Our numerical experiments suggest the r dependence in
our bound (1) for sin∠(u1, ũ1) is tight, while for the `∞ bound (2), there is potential to
improve the factor

√
r
√
r+ log(N + n) to

√
r+ log(N + n).

A.2. Singular subspace perturbations. We now analyze the optimality of our singular
subspace perturbation bounds, with particular attention to their dependence on the signal
rank r.
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FIG 2. Empirical exploration of rank dependence in singular vector perturbation: `∞ norm. For each rank
r ∈ {10,30, . . . ,350}, we simulate 100 independent trials of a rank-r signal matrix A corrupted by Gaussian
noise and compute the 10th percentile of mins∈{±1} ‖u1 − sũ1‖∞. We set n= 400. The singular values of A
are given as follows: σ1 = 1000, σ2 = 980 with δ1 = 20, and the remaining r− 2 nonzero singular values decay
linearly down to 950. The figure compares three scaling laws, r,

√
r, and r1/3, via linear fits and R2 values,

showing that
√
r provides the best empirical fit (R2 = 0.9965).

The Frobenius and operator norm bounds. We begin by examining bounds for unitarily
invariant norms, specifically the Frobenius and operator norms. Under the assumptions of
Theorem 2.1, we establish the following high-probability bounds for any 1 ≤ k ≤ r (note
that the Frobenius norm bound below follows directly from our proof and improves upon
Theorem 2.1 by removing the

√
k0 factor):

‖ sin∠(Uk, Ũk)‖F .
√
k ·
√
r+ log(N + n)

δk
+
‖E‖F
σk

,(3)

‖ sin∠(Uk, Ũk)‖.
√
k ·
√
r+ log(N + n)

δk
+
‖E‖
σk

,(4)

which reduce to the classical Wedin’s bounds when k = r.
We first focus on the necessity of the second terms involving ‖E‖F and ‖E‖. The follow-

ing lemma shows that these terms are not merely technical artifacts but reflect intrinsic lower
bounds in the presence of random noise:

LEMMA A.1. Let A and E be N × n real matrices, where A is deterministic with rank
r ≥ 1 and the entries ofE are i.i.d. sub-gaussian random variables with mean 0 and variance
1. Assume the k-th (1≤ k ≤ r) largest singular value ofA satisfies σk ≥ 4(

√
N+
√
n). Then,

with probability at least 1−C exp(−cN)−C exp(−cn), we have

max{‖ sin∠(Uk, Ũk)‖F ,‖ sin∠(Vk, Ṽk)‖F } ≥
√
N + n− 2r

3(1 +
√

2)

√√√√ k∑
i=1

1

σ2i
,(5)

max{‖ sin∠(Uk, Ũk)‖,‖ sin∠(Vk, Ṽk)‖} ≥
√
N + n− 2r

3(1 +
√

2)
√
k

√√√√ k∑
i=1

1

σ2i
(6)

where C,c > 0 are constants depending on the sub-gaussian norm of the entries of E.
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Lemma A.1 shows the necessity of the second terms in (3) and (4). For an n×n matrix A
of rank r ≤ 0.8n (say), the lemma yields:

‖ sin∠(Uk, Ũk)‖F &
√
n

√√√√ k∑
i=1

1

σ2i
, ‖ sin∠(Uk, Ũk)‖&

√
n√
k

√√√√ k∑
i=1

1

σ2i
.

When the singular values are relatively flat (σ1 � σk) and k � n, the Frobenius norm lower
bound reduces to

√
kn
σk
� ‖E‖Fσk

, since ‖E‖F � n. This matches ‖E‖Fσk
up to a constant. Simi-

larly, the operator norm lower bound simplifies to
√
n

σk
, matching the term ‖E‖

σk
. These lower

bounds verify that the noise terms ‖E‖Fσk
and ‖E‖σk

are unavoidable, as they are achieved (up to
constants) in this regime. The proof of Lemma A.1 is deferred to Section C.5.

The leading term
√
k ·
√
r+log(N+n)

δk
appears in both bounds, though we believe it is sharp

only for the Frobenius norm. The use of the inequality ‖B‖ ≤ ‖B‖F in the proof for (4)
suggests potential looseness in the operator norm bound.

To assess the
√
r-dependence in the Frobenius case, we conduct numerical experiments

for k = 10 and k = 50. For each k, we construct a rank-r matrix A ∈ R400×400 with top k
singular values equal to 1000, decaying linearly to σr = 950 to ensure δk ≈ 50. The noise
matrix E has i.i.d. standard Gaussian entries. Over 100 trials, we compute ‖ sin∠(Uk, Ũk)‖F
and report the 10th percentile to capture typical behavior.

Figures 3 and 4 support the plausibility of the
√
r-dependence. For k = 10, the

√
r-fit

achieves R2 = 0.9528, slightly better than
√
r+ log(2n) (R2 = 0.9475) and significantly

better than r (R2 = 0.8610). A log-log fit yields r0.366 (R2 = 0.9825). For k = 50, the cor-
responding values are R2 = 0.9596 for

√
r, R2 = 0.9576 for

√
r+ log(2n), R2 = 0.9062

for r, and a log-log scaling of r0.663 (R2 = 0.9266). For reference, k = 30 produces r0.520

(R2 = 0.9447). The consistently high R2 values for
√
r validate its role in the bound.

In contrast, for the operator norm, the rank dependence in (4) appears to be loose. Nu-
merical evidence suggests that the growth of ‖ sin∠(Uk, Ũk)‖ with r and k is much slower
than the

√
kr factor in our bound. This discrepancy stems from the use of the inequality

‖B‖ ≤ ‖B‖F in the proof. A sharper analysis, potentially directly bounding the largest singu-
lar value of the perturbation matrix, may yield improved bounds. We leave this improvement
for future exploration.

The `2,∞ bound. Corollary 2.9 establishes that for some O ∈Ok×k,

‖Ũk −UkO‖2,∞ .
√
k

√
r+ log(N + n)

δk
‖U‖2,∞ +

√
k

√
r log(N + n)

σk
+
‖E‖2

σ2k
‖Uk‖2,∞.

(7)

Assume U is incoherent, e.g., ‖U‖max . 1√
N

, (7) simplifies to

‖Ũk −UkO‖2,∞ .
√
k

√
r+ log(N + n)

δk

√
r√
N

+
√
k

√
r log(N + n)

σk
.(8)

In comparison, a naive bound

‖Ũk −UkO‖2,∞ .
√
k

√
r+ log(N + n)

δk

√
r+

√
r
√
N

σk

follows from the inequality ‖B‖2,∞ ≤
√
r‖B‖ for B ∈ Rn×r and (4). Compared to this,

the refined bound in (7) gains a factor of 1√
N

, assuming k = O(1) and ignoring log terms.
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FIG 3. Empirical exploration of rank dependence in singular subspace perturbation: Frobenius norm. For
each rank r ∈ {20,40,60, . . . ,350}, we simulate 100 independent trials of a rank-r signal matrix A corrupted
by Gaussian noise and compute the 10th percentile of ‖ sin∠(U10, Ũ10)‖F . We set n= 400. The singular values
of A are given as follows: σ1 = · · · = σ10 = 1000, and the remaining r − 10 nonzero singular values decay
linearly down to 950. The figure compares three scaling laws,

√
r+ log(2n),

√
r, and r, via linear fits and R2

values, showing that
√
r provides the best empirical fit (R2 = 0.9528).
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FIG 4. Empirical exploration of rank dependence in singular subspace perturbation: Frobenius norm. For
each rank r ∈ {20,40,60, . . . ,350}, we simulate 100 independent trials of a rank-r signal matrix A corrupted
by Gaussian noise and compute the 10th percentile of ‖ sin∠(U50, Ũ50)‖F . We set n= 400. The singular values
of A are given as follows: σ1 = · · · = σ50 = 1000, and the remaining r − 50 nonzero singular values decay
linearly down to 950. The figure compares three scaling laws,

√
r+ log(2n),

√
r, and r, via linear fits and R2

values, showing that
√
r provides the best empirical fit (R2 = 0.9696).

This improvement is crucial in statistical applications–such as clustering–where sharper `2,∞
control enables simple spectral methods to achieve optimal or near-optimal performance.

We also explored the `2,∞ norm bound in (8) for k = 10. With n= 400, σ1 = · · ·= σ10 =
1000, σ11 = 980, σr = 950, and incoherent U (generated using Haar-measure), we computed
the 10th percentile of ‖Ũ10 − U10O‖2,∞ over 100 trials for r = 20,40, . . . ,350. Figure 5
shows linear fits against r,

√
r, and r1/3, with

√
r providing the best fit (R2 = 0.9993). A
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log-log fit yields r0.540 (R2 = 0.9987), supporting the
√
r-dependence. These results indicate

that the current
√
kr factor in the first term of (8) may be improved.
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FIG 5. Empirical exploration of rank dependence in singular subspace perturbation: `2,∞ norm. For each rank
r ∈ {20,40, . . . ,350}, we simulate 100 independent trials of a rank-r signal matrix A corrupted by Gaussian
noise and compute the 10th percentile of ‖Ũ10−U10O‖2,∞. We set n= 400. The singular values ofA are given
as follows: σ1 = · · ·= σ10 = 1000, σ11 = 980, and the remaining r−11 nonzero singular values decay linearly
down to 950. The figure compares three scaling laws, r,

√
r, and r1/3, via linear fits and R2 values, showing

that
√
r provides the best empirical fit (R2 = 0.9993).

When k = r, a case extensively studied in several recent works [3, 14, 15], we have

min
O∈Or×r

‖Ũr −UO‖2,∞ .
r
√

log(N + n)

σr
+
‖E‖2

σ2r
‖U‖2,∞.

For context, Theorem 4.4 from [4] establishes `2,∞ bounds for the perturbation of the entire
singular subspace under general noise matrices E. Assuming square matrices of size n× n,
their result yields:

min
O∈Or×r

‖Ũr −UO‖2,∞ .

√
r logn

σr
+

σ1√
rσr
· ‖E‖
σr
‖U‖2,∞,

requiring σr ≥ c
√
n logn. A sharper bound was recently established in [15, Proposition 2]:

min
O∈Or×r

‖Ũr −UO‖2,∞ .

√
r+ log(N + n)

σr
+
‖E‖2

σ2r
‖U‖2,∞.

This suggests that the
√
k(r+ log(N + n))‖U‖∞ factor in (7) may be improvable. Addition-

ally, the minimax lower bound from [2, Theorem 2] shows that any estimator for U under the
`2,∞ norm incurs error at least min{

√
n
σ2
r

+ 1
σr
,1}. If U is incoherent, e.g., ‖U‖2,∞ .

√
r√
n

, then
the upper and lower bounds match up to a factor in terms of r, indicating the near-optimality
of our result.

A.3. Summary. Our numerical experiments offer compelling support for the rank depen-
dence in several perturbation bounds derived in this paper.
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• Leading singular vector. Our simulations confirm that sin∠(u1, ũ1) scales as
√
r/δ1 up to

logarithmic factors. This validates the
√
r dependence in the upper bound (1) and suggests

that this bound is tight with high probability.
For the `∞ norm bound, our empirical findings indicate that the leading-order factor√
r in the upper bound may be unnecessary under incoherence. The `∞ bound contains a

factor of ‖U‖2,∞, which scales as
√
r/N for incoherent matrices. This introduces an extra√

r factor that is not reflected in the observed lower bound behavior. A refined analysis of
the role of ‖U‖2,∞ could potentially improve the bound from r to

√
r.

• Singular subspaces. For general singular subspaces, the Frobenius norm bound (3) shows
the expected

√
k
√
r+ log(N + n) scaling, aligning with simulations. However, for the

operator norm in (4), the
√
kr dependence appears loose, as numerical evidence suggests

slower growth in k · r. The current proof uses ‖B‖ ≤ ‖B‖F , introducing a loose reduction
that could be improved by a direct analysis of the operator norm.

For the `2,∞ norm bound, simulations support the
√
r scaling, but like the `∞ case, the

leading term contains ‖U‖2,∞, contributing an extra
√
r under incoherence. Refining the

role of ‖U‖2,∞ under incoherence could improve the rank dependence in (8)’s first term.

Our numerical analysis suggests that the dependence on signal rank r is empirically tight
for Frobenius norm and angular perturbation bounds. However, the experiments identify po-
tential room for improvement in both operator norm and `2,∞ norm bounds. We leave these
for future exploration.

B. Preliminary.

B.1. Matrix norms. Consider anN×nmatrixA= (aij) with singular values σ1 ≥ · · · ≥
σmin{N,n} ≥ 0. Let |||A||| be a norm of A of certain interest.

The first type of matrix norms are the unitarily invariant norms. The norm ||| · ||| on RN×n
is said to be unitarily invariant if |||A||| = |||UAV ||| for all orthogonal matrices U ∈ RN×N
and V ∈ Rn×n. There is an intimate connection between the unitarily invariant norms and
the singular values of matrices via the symmetric gauge functions (see [1, Section IV]).

DEFINITION B.1 (Symmetric gauge function). A function f : Rn → R is a symmetric
gauge function if

(i) f is a norm,
(ii) f(Px) = f(x) for all x ∈Rn and P ∈ Sn (the set of permutation matrices),
(iii) f(ε1x1, · · · , εnxn) = f(x1, · · · , xn) if εj =±1.

We say the symmetric gauge function f is normalized if f(1,0, · · · ,0) = 1.

THEOREM B.2 (Theorem IV.2.2 from [1]). A norm ||| · ||| on RN×n is unitarily invariant
if and only if |||A||| = f(σ1, . . . , σmin{N,n}) for all A ∈ RN×n for some symmetric gauge
function f , where σ1, . . . , σmin{N,n} are the singular values of A.

If ||| · ||| is a unitarily invariant norm on RN×n and f is its associated symmetric gauge
function, then for k, s ≤min{N,n}, a unitarily invariant norm on Rk×s can be defined by
|||A|||= f(σ1, · · · , σmin{k,s},0, · · · ,0), where σi’s are the singular values of A ∈ Rk×s. As a
result, a family of matrix norms can be defined based on f that can be applied to matrices of
varying dimensions. As such, we will not explicitly mention the dimensions of the unitarily
invariant norm ||| · |||.
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Moreover, a unitarily invariant norm ||| · ||| is said to be normalized if its associated sym-
metric gauge function f is normalized. Consequently, a normalized unitarily invariant norm
always satisfies |||diag(1,0, · · · ,0)|||= 1.

Another characterization of the unitarily invariant norm is given by the symmetric prop-
erty.

THEOREM B.3 (Proposition IV.2.4 from [1]). A norm ||| · ||| on RN×n is unitarily invariant
if and only if the norm is symmetric, that is,

|||ABC||| ≤ ‖A‖ · |||B||| · ‖C‖
for every A ∈RN×N ,B ∈RN×n and C ∈Rn×n.

A wide range of matrix norms that are commonly used are part of the class of unitarily
invariant norms. For instance, for p ∈ [1,∞], the Schatten p-norm of A is defined by

‖A‖p =

min{N,n}∑
i=1

σpi

1/p

.

In particular, the case p= 2 yields the Frobenius norm ‖A‖F =
√∑

i,j a
2
ij . The case p=∞

yields the operator norm ‖A‖= σ1. The case p= 1 yields the nuclear (or trace) norm

‖A‖∗ = ‖A‖1 =

min{N,n}∑
i=1

σi = tr
(√

AAT
)
.

Note that

(9) ‖A‖2p = ‖ATA‖p/2 for p≥ 2.

Another class of unitarily invariant norms is the Ky Fan k-norm

‖A‖(k) =

k∑
i=1

σi, 1≤ k ≤min{N,n}.

Hence, ‖A‖(1) = ‖A‖ and ‖A‖(min{N,n}) = ‖A‖∗. A highly significant result known as the
Fan dominance theorem is connected to the Ky Fan norm:

THEOREM B.4 (Theorem IV.2.2 from [1]). Let A,B be two n× n matrices. If

‖A‖(k) ≤ ‖B‖(k) for k = 1,2, · · · , n,
then |||A||| ≤ |||B||| for all unitarily invariant norms.

If ||| · ||| is also normalized, then a direct implication of Theorem B.4 is that

‖A‖ ≤ |||A||| ≤ ‖A‖∗,(10)

σmin(A)|||B||| ≤ |||AB||| ≤ ‖A‖|||B|||,

σmin(A)|||B||| ≤ |||BA||| ≤ ‖A‖|||B|||.
It also follows from Theorem B.3 and (10) that |||AB||| ≤ |||A||||||B|||.

We also consider the following norms, which do not belong to the class of unitarily invari-
ant norms. Denote Ai,·’s the rows of A ∈RN×n. The `2,∞ norm of A is

‖A‖2,∞ = max
i
‖Ai,·‖2 = max

1≤i≤N
‖eTi A‖.

Finally, denote ‖A‖max = maxi,j |aij |. Note that ‖ · ‖max is not sub-multiplicative.
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B.2. Distance between subspaces. Using the angles between subspaces and using the
orthogonal projections to describe their separation are two popular approaches for measuring
the distance between subspaces. These two methods are essentially equivalent when it comes
to any unitarily invariant norm ||| · |||. We start with some basic notions.

If U and V are two subspaces of the same dimension r, then one could define the principal
angles 0≤ θ1 ≤ · · · ≤ θr ≤ π/2 between them recursively:

cos(θi) = max
u∈U,v∈V

uT v = uTi vi, ‖u‖= ‖v‖= 1

subject to the constraint

uTi ul = 0, vTi vl = 0 for l= 1, . . . , i− 1.

Denote ∠(U,V ) := diag(θ1, · · · , θr). Further, let

sin∠(U,V ) := diag(sinθ1, · · · , sinθr),

cos∠(U,V ) := diag(cosθ1, · · · , cosθr).

With abuse of notation, we also let U = (u1, · · · , ur) and V = (v1, · · · , vr) be matrices of
size n× r whose columns are orthonormal bases of subspaces U and V respectively. Then
PU = UUT (resp. PV = V V T ) is the orthogonal projection matrix onto the subspace U (resp.
V ). For a subspace W , denote its complement by W⊥.

The following facts are collected from [1, Exercises VII. 1. 9 – 1.11].

PROPOSITION B.5. Let U,V,PU , PV , sin∠(U,V ), cos∠(U,V ) be as above.

(i) The nonzero singular values of PUPV are the same as the nonzero singular values of
UTV .

(ii) The singular values of PUPV are cosθ1, · · · , cosθr . The nonzero singular values of
PU⊥PV are the nonzero values of sinθ1, · · · , sinθr .

(iii) The nonzero singular values of PU −PV are the nonzero singular values PU⊥PV , each
counted twice; i.e., these are the nonzero numbers in

sinθ1, sinθ1, sinθ2, sinθ2, · · · , sinθr, sinθr.

For any unitarily invariant norm ||| · |||, by Proposition B.5, we observe

||| sin∠(U,V )|||= |||PU⊥PV |||= |||PV ⊥PU |||(11)

and

|||PU − PV |||= |||PU⊥PV ⊕ PUPV ⊥ |||.

This suggests the (near) equivalence of ||| sin∠(U,V )||| and |||PU −PV |||. For instance, for the
Schatten p-norm, we have

‖PU − PV ‖p = 2
1

p ‖PU⊥PV ‖p = 2
1

p ‖ sin∠(U,V )‖p.

For the Ky Fan k-norm, denote ‖A‖(0) = 0. Then

‖PU − PV ‖(k) =

{
‖PU⊥PV ‖( k−1

2
) + ‖PU⊥PV ‖( k+1

2
), if k is odd;

2‖PU⊥PV ‖( k

2
), if k is even.

Another method that is commonly used to quantify the distance between U and V is to
use

min
O∈Or×r

|||UO− V |||.
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It is shown in [3, Lemma 2.6] that the above distance is (near) equivalent to the |||PU −
PV ||| for the Frobenius norm and the operator norm. In fact, we can demonstrate that these
distances are (near) equivalent when considering the Schatten-p norm for any p ∈ [2,∞] :

(12) ‖ sin∠(U,V )‖p ≤ min
O∈Or×r

‖UO− V ‖p ≤
√

2‖ sin∠(U,V )‖p.

The proof of (12) is given in Appendix F.1.
More generally, for any unitarily invariant norm ||| · ||| on RN×n, we have

(13) min
O∈Or×r

|||UO− V ||| ≤
√

2||| sin∠(U,V )|||.

The proof of (13) is given in Appendix F.2.
In certain applications, the primary focus is to compare the matrices U = (u1, · · · , ur) and

V = (v1, · · · , vr) of size n× r with respect to specific directions. According to Proposition
B.5, the SVD of UTV is given by

UTV =O1 cos∠(U,V )OT
2 ,(14)

whereO1,O2 ∈Or×r . DenoteO :=O1O
T
2 ∈Or×r . We highlight the following deterministic

result, the proof of which can be found in Appendix F.3.

PROPOSITION B.6. Let x be any unit vector in Rn and y be any unit vector in Rr . We
have

‖xT(V −UO)‖ ≤ ‖xT(V − PUV )‖+ ‖xTU‖‖ sin∠(U,V )‖2

and ∣∣xT(V −UO)y
∣∣≤ ∣∣xT(V − PUV )y

∣∣+ ‖xTU‖‖ sin∠(U,V )‖2.

In particular,

‖V −UO‖2,∞ ≤ ‖V − PUV ‖2,∞ + ‖U‖2,∞‖ sin∠(U,V )‖2.

Finally, it can be verified from the definition that for any orthogonal matrix O,

‖V −UO‖2,∞ = ‖V OT −U‖2,∞.

C. Proofs of Theorems 2.3, 2.10, 2.11 and 2.13 and Lemma A.1. In the proofs below,
we always work on the event where ‖E‖ ≤ 2(

√
N +
√
n); Lemma 6.7 shows this event holds

with probability at least 1− 2e−(
√
N+
√
n)2/2 ≥ 1− 2(N +n)−16(K+7) since (

√
N +
√
n)2 ≥

32(K + 7) log(N + n) by assumption.
Denote

I := Jk, sK∪ Jr+ k, r+ sK

and

J := J1,2rK \ I = J1, k− 1K∪ Js+ 1, rK∪ Jr+ 1, r+ k− 1K∪ Jr+ s+ 1,2rK.

We first obtain an identity for the eigenvector ũi. For each i ∈ I , by Weyl’s inequality, |λ̃i| ≥
σ̃r0 ≥ σr0 − ‖E‖ > ‖E‖ = ‖E‖ by supposition on σr0 and thus G(λ̃i) and Φ(λ̃i) are well-
defined. As (A+ E)ũi = λ̃iũi, we solve for ũi to obtain

ũi = (λ̃iI −E)−1Aũi =G(λ̃i)Aũi.
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In fact, we can approximate G(λ̃i) with a simpler random matrix, denoted as Π(z) below.
Depending on the magnitude of λ̃i under consideration (the specifics of which will become
clear in subsequent context), we choose Π(λ̃i) to be either Φ(λ̃i) if |λ̃i| is relatively small
and 1

λ̃i

IN+n + 1

λ̃2
i

E or even simply 1

λ̃i

IN+n if |λ̃i| is sufficiently large. Furthermore, denote

Ξ(λ̃i) :=G(λ̃i)−Π(λ̃i).(15)

Hence, we rewrite

ũi = Π(λ̃i)Aũi + Ξ(λ̃i)Aũi(16)

This decomposition of ũi is critical in facilitating the extraction of its desired property infor-
mation. Note that Lemma 6.3 and Lemma 6.5 provides precise control on the size of Ξ(λ̃i).

For J ⊂ J1,2rK, we introduce the notation UJ to denote the (N + n)× |J | matrix formed
from U by removing the columns containing ui for i 6∈ J . Similarly, DJ will denote the
|J | × |J | matrix formed from D by removing the rows and columns containing λi for i 6∈ J .
Let I := J1,2rK \ J . In this way, we can decompose A as

(17) A= UDUT = UJDJUT
J + UIDIUT

I .

Let PJ be the orthogonal projection onto the subspace Span{uk : k ∈ J}. Clearly, PJ =
UJUT

J . If J = J1, kK, we sometimes simply write Uk for UJ and Pk for PJ . Analogous nota-
tions ŨJ , P̃J , D̃J are also defined for Ã. We also usePJ2r+1,N+nK = UJ2r+1,N+nKUT

J2r+1,N+nK
to denote the orthogonal projection onto the null space of A.

Now we proceed to the proofs of the main results.

C.1. Proof of Theorem 2.3. From (11), we start by observing

||| sin∠(UI , ŨI)|||= |||PIcP̃I ||| ≤ |||PJ2r+1,N+nKP̃I |||+ |||PJ P̃I |||.

We bound the two terms |||PJ2r+1,N+nKP̃I ||| and |||PJ P̃I ||| respectively.

LEMMA C.1. With probability 1,

(18) |||PJ2r+1,N+nKP̃I ||| ≤ 2
|||PJ2r+1,N+nKEP̃I |||

σs
.

PROOF. By Proposition B.5 (i) and Theorem B.2,

|||PJ2r+1,N+nKP̃I |||= |||UT
J2r+1,N+nKŨI |||.

From the spectral decomposition of Ã, we have

(A+ E)ŨI = ŨID̃I .

Multiplying by UT
J2r+1,N+nK on the left of the equation above, we further have

UT
J2r+1,N+nKEŨI = UTJ2r+1,N+nKŨID̃I .(19)

As σr0 ≥ b‖E‖ ≥ 2‖E‖ by supposition, Weyl’s inequality implies that

(20) σ̃i ≥ σi − ‖E‖ ≥
1

2
σi
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for k ≤ i≤ s. Hence, D̃I is invertible since |λ̃i|= σ̃i > 0 for i ∈ Jk, sK and |λ̃i|= σ̃i−r > 0
for i ∈ Jr+ k, r+ sK. It follows from Theorem B.3 that

|||UT
J2r+1,N+nKŨI |||= |||U

T
J2r+1,N+nKEŨID̃

−1
I |||

≤ |||UT
J2r+1,N+nKEŨI |||‖D̃

−1
I ‖

=
|||PJ2r+1,N+nKEP̃I |||

σ̃s
.

The last equation above follows from the fact that for U with orthonormal columns, UTB
and UUTB share the same singular values.

Thus by another application of (20), we get

|||PJ2r+1,N+nKP̃I ||| ≤
|||PJ2r+1,N+nKEP̃I |||

σ̃s
≤ 2
|||PJ2r+1,N+nKEP̃I |||

σs
.(21)

as desired.

It remains to bound |||PJ P̃I |||= |||UT
J ŨI |||. We apply (10) to obtain

|||PJ P̃I |||= |||UT
J ŨI ||| ≤ ‖UT

J ŨI‖∗

≤
√

rank(UT
J ŨI) · ‖U

T
J ŨI‖F

≤ 2
√

min{s− k+ 1, r− s+ k− 1}‖UT
J ŨI‖F

= 2
√

min{s− k+ 1, r− s+ k− 1}
√∑

i∈I
‖UT

J ũi‖2.(22)

In particular, for the operator norm, when |J | 6= 0, we simply have

‖PJ P̃I‖= ‖UT
J ŨI‖ ≤ ‖UT

J ŨI‖F =

√∑
i∈I
‖UT

J ũi‖2.(23)

It remains to bound ‖UT
J ũi‖ for each i ∈ I . We have the following estimates

LEMMA C.2. For every i ∈ I ,

‖UT
J ũi‖ ≤ 3

(b+ 2)2

(b− 1)2
η

min{δk−1, δs}
(24)

with probability at least 1− 20(N + n)−K .

The proof of Lemma C.2 closely mirrors the strategy employed in Lemma 20 from [9].
For the sake of completeness, we have included the proof of Lemma C.2 in Appendix H.

It follows from (22) and Lemma C.2 that

|||PJ P̃I ||| ≤ 6
√

2
(b+ 2)2

(b− 1)2

√
min{s− k+ 1, r− s+ k− 1} η

√
s− k+ 1

min{δk−1, δs}

with probability at least 1− 20(N + n)−K .
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Consequently, we arrive at

||| sin∠(UI , ŨI)|||= |||PIcP̃I |||

≤ 6
√

2
(b+ 2)2

(b− 1)2

√
min{s− k+ 1, r− s+ k− 1} η

√
s− k+ 1

min{δk−1, δs}

+ 2
|||PJ2r+1,N+nKEP̃I |||

σs
.(25)

In particular, the following bound holds for the operator norm:

‖ sin∠(UI , ŨI)‖ ≤ 3
√

2
(b+ 2)2

(b− 1)2
1{|J |6=0}

η
√
s− k+ 1

min{δk−1, δs}
+ 2
‖E‖
σs

.(26)

Let γ1, · · · , γ2(s−k+1) be the principal angles of the subspaces UI and ŨI . Denote
α1, · · · , αs−k+1 (resp. β1, · · · , βs−k+1) the principal angles of Uk,s, Ũk,s (resp. Vk,s, Ṽk,s).
From the proof of [9, Proposition 8], we see that the singular values of UT

I ŨI , given by
cosγ1, · · · , cosγ2(s−k+1), are exactly

cosα1, · · · , cosαs−k+1, cosβ1, · · · , cosβs−k+1.

Hence,

||| sin∠(UI , ŨI)|||= ||| sin∠(Uk,s, Ũk,s)⊕ sin∠(Vk,s, Ṽk,s)|||.

Note that by the definitions of E , P̃I and PJ2r+1,N+nK,

PJ2r+1,N+nKEP̃I =

(
0 PU⊥EPṼk,s

PV ⊥E
TPŨk,s

0

)
.

Using the unitary equivalence, we find

|||PJ2r+1,N+nKEP̃I |||= |||PU⊥EPṼk,s
⊕ PV ⊥ETPŨk,s

|||.

Hence, from (25), we conclude that

||| sin∠(Uk,s, Ũk,s)⊕ sin∠(Vk,s, Ṽk,s)|||

≤ 6
√

2
(b+ 2)2

(b− 1)2

√
min{s− k+ 1, r− s+ k− 1} η

√
s− k+ 1

min{δk−1, δs}

+ 2
|||PU⊥EPṼk,s

⊕ PV ⊥ETPŨk,s
|||

σs
.(27)

The conclusion of Theorem 2.3 follows immediately from the fact that

max{||| sin∠(Uk,s, Ũk,s)|||, ||| sin∠(Vk,s, Ṽk,s)|||} ≤ ||| sin∠(Uk,s, Ũk,s)⊕ sin∠(Vk,s, Ṽk,s)|||

by Theorem B.4.
Specifically, for the operator norm, from (26), we see that

max{‖ sin∠(Uk,s, Ũk,s)‖,‖ sin∠(Vk,s, Ṽk,s)‖}

≤ ‖ sin∠(Uk,s, Ũk,s)⊕ sin∠(Vk,s, Ṽk,s)‖= ‖ sin∠(UI , ŨI)‖

≤ 3
√

2
(b+ 1)2

(b− 1)2
1{s−k+16=r}

η
√
s− k+ 1

min{δk−1, δs}
+ 2
‖E‖
σs

.

This completes the proof.
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C.2. Proof of Theorem 2.10. We start with the decomposition (16)1:

ũi = Π(λ̃i)Aũi + Ξ(λ̃i)Aũi.

In the proof, we set

Π(λ̃i) :=

{
Φ(λ̃i), if |λi| ≤ n2;
1

λ̃i

IN+n, if |λi|> n2,
(28)

and recall that

Ξ(λ̃i) =G(λ̃i)−Π(λ̃i).

LetQ= I−Pr be the orthogonal projection matrix onto the null space ofA. It is elementary
to verify that PrΠ(λ̃i)A= Π(λ̃i)A using the definitions of U and Pr = UUT. When Π(λ̃i) is
a scalar matrix, the result follows immediately since PrA=A. For the case where Π(λ̃i) =

Φ(λ̃i), from [13, Eq. (29)], we have

PrΠ(λ̃i)A= U · UTΦ(λ̃i)U · DUT = U
(
αIr βIr
βIr αIr

)
· DUT

and from [13, Eq. (25)],

Π(λ̃i)A=

(
1
φ1
IN 0

0 1
φ2
In

)
U · DUT.

Using the definitions of α,β in [13, Eq. (29)] and the structure of U , one can verify that

U
(
αIr βIr
βIr αIr

)
=

1√
2

(
(α+ β)U (α+ β)U
(α− β)V −(α− β)V

)
=

(
1
φ1
IN 0

0 1
φ2
In

)
U ,

which establishes PrΠ(λ̃i)A= Π(λ̃i)A.
Hence, continuing from (16), we can derive the following expression

Qũi =QΞ(λ̃i)Aũi.

Furthermore, we obtain the decomposition

ũi =PI ũi +PJ ũi +Qũi

=PI ũi +PJ ũi +QΞ(λ̃i)Aũi.

It follows that

ŨI −PI ŨI =PJ ŨI + (QΞ(λ̃i)Aũi)i∈I .(29)

We aim to bound

‖Ũk,s − PUk,s
Ũk,s‖2,∞ = max

1≤l≤N
‖eTl (Uk,s − PUk,s

Ũk,s)‖.

1 This decomposition may appear structurally similar to the Neumann expansion technique used in Eldridge et
al. [5], where the perturbed eigenvector is expanded algebraically and then decomposed into components parallel
and orthogonal to the true eigenvector. However, our decomposition is functional: we approximate the resolvent
operator G(z) with a diagonal matrix Π(z), and the remainder is rigorously controlled using the isotropic local
law. This enables us to identify the leading component of ũi and bound the remainder probabilistically, rather
than through algebraic expansion.
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where el’s are the canonical vectors in RN . From the definition of

U =
1√
2

(
U U
V −V

)
from Section 6.1, it is elementary to check that

ŨI − PI ŨI =
1√
2

(
Ũk,s − PUk,s

Ũk,s Ũk,s − PUk,s
Ũk,s

Ṽk,s − PVk,s
Ṽk,s −(Ṽk,s − PVk,s

Ṽk,s)

)
.

Hence,

‖Ũk,s − PUk,s
Ũk,s‖2,∞ = max

1≤l≤N

∥∥∥eTl (ŨI −PI ŨI)∥∥∥ ,
where el’s are the canonical vectors in RN+n. Continuing from (29), we see

‖Ũk,s − PUk,s
Ũk,s‖2,∞ = max

1≤l≤N
‖eTl

(
ŨI −PI ŨI

)
‖

≤ max
1≤l≤N

‖eTl PJ ŨI‖ · 1{|J |6=0} + max
1≤l≤N

‖eTl (QΞ(λ̃i)Aũi)i∈I‖.(30)

Provided that |J | 6= 0 or equivalently, s− k + 1 6= r, the first term on the right-hand side
of (30) can be bounded by

max
1≤l≤N

‖eTl PJ ŨI‖= max
1≤l≤N

‖eTl UJ · UT
J ŨI‖

≤ max
1≤l≤N

‖eTl UJ‖ · ‖UT
J ŨI‖

≤ ‖U‖2,∞‖UT
J ŨI‖F = ‖U‖2,∞

√∑
i∈I
‖UT

J ũi‖2.

By Lemma C.2, we further obtain

max
1≤l≤N

‖eTl PJ ŨI‖ ≤ 3
√

2
(b+ 1)2

(b− 1)2
‖U‖2,∞

η
√
s− k+ 1

min{δk−1, δs}
(31)

with probability at least 1− 20(N + n)−K .
Next, we bound the second term on the right-hand side of (30):

max
1≤l≤N

‖eTl (QΞ(λ̃i)Aũi)i∈I‖= max
1≤l≤N

√∑
i∈I

(eTl QΞ(λ̃i)Aũi)2.(32)

For each i ∈ I , ∣∣∣eTl QΞ(λ̃i)Aũi
∣∣∣= ∣∣∣eTl (I −UUT)Ξ(λ̃i)U · DUTũi

∣∣∣
≤
∥∥∥eTl (I −UUT)Ξ(λ̃i)U

∥∥∥ · ∥∥DUTũi
∥∥ .(33)

Observe from (A+E)ũi = λ̃iũi that UDUTũi = (λ̃iI−E)ũi. Multiplying UT on both sides,
we get the bound ∥∥DUTũi

∥∥≤ ‖E‖+ |λ̃i| ≤
(

1 +
1

b− 1

)
|λ̃i|=

b

b− 1
|λ̃i|(34)

using the assumption ‖E‖ = ‖E‖ ≤ 1
b |λi| and the Weyl’s inequality |λ̃i| ≥ |λi| − ‖E‖ ≥

(b− 1)‖E‖.
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To estimate∥∥∥eTl (I −UUT)Ξ(λ̃i)U
∥∥∥≤ ∥∥∥eTl Ξ(λ̃i)U

∥∥∥+
∥∥∥eTl UUTΞ(λ̃i)U

∥∥∥
≤
∥∥∥eTl Ξ(λ̃i)U

∥∥∥+
∥∥∥U‖2,∞‖UTΞ(λ̃i)U

∥∥∥ ,(35)

we split the index set I into two disjoint sets:

Is :=
{
i ∈ I : |λi| ≤ n2

}
and Ib :=

{
i ∈ I : |λi|> n2

}
.

Note that Is or Ib could be the empty set.

Case (1): i ∈ I ∩ Is. In this case,

Ξ(λ̃i) =G(λ̃i)−Φ(λ̃i).

Note that if z ∈ Sσi
specified in [13, Eq. (35)] for any 1≤ i≤ r0, then |z| ≥ 2b(

√
N +

√
n)

by the supposition of σi. Recall

η =
11b2

(b− 1)2

√
(K + 7) log(N + n) + 2(log 9)r.

We work on the event E := ∩i∈Jk,sK∩IsEi where

Ei :=
{
σ̃i ∈ Sσli

for some li ∈ J1, r0K
}
∩
{∥∥UTΞ(σ̃i)U

∥∥≤ η

σ̃2i

}

∩

{∣∣eTl Ξ(σ̃i)us
∣∣≤ 5b2

(b− 1)2

√
(K + 7) log(N + n)

σ̃2i
for 1≤ l≤N + n,1≤ s≤ r

}
.(36)

By Theorem 6.4, Lemma 6.3 and Lemma 6.2, the event E holds with probability at least
1− 20(N + n)−K . For i ∈ Jk, sK∩ Is, λ̃i = σ̃i. It follows immediately that∥∥∥eTl Ξ(λ̃i)U

∥∥∥+ ‖U‖2,∞
∥∥∥UTΞ(λ̃i)U

∥∥∥
=

√√√√ 2r∑
s=1

(
eTl Ξ(λ̃i)us

)2
+ ‖U‖2,∞

∥∥∥UTΞ(λ̃i)U
∥∥∥

<
18b2

(b− 1)2

√
r(K + 7) log(N + n)

λ̃2i
(1 + ‖U‖2,∞).(37)

Continuing from (33), (34) and (35), we further have for any i ∈ I ∩ Is,

(38)
∣∣∣eTl QΞ(λ̃i)Aũi

∣∣∣≤ 2b

b− 1

γ

|λ̃i|
(1 + ‖U‖2,∞)

where we define

γ :=
9b2

(b− 1)2

√
r(K + 7) log(N + n)

for the sake of brevity. For i ∈ Jr+ k, r+ sK∩ Is, λ̃i =−σ̃i−r . Note that Ξ(λ̃i)∼−Ξ(σ̃i−r)
since the distribution of E is symmetric. The bound (38) still holds.

Case (2): i ∈ I ∩ Ib. In this case,

Ξ(λ̃i) =G(λ̃i)−
1

λ̃i
IN+n.



SINGULAR SUBSPACE PERTURBATION UNDER RANDOM NOISE 17

By Weyl’s inequality, |λ̃i| ≥ n2 − ‖E‖ ≥ 4(
√
N +

√
n) for every i ∈ Ib, we apply Lemma

6.5 to get

‖Ξ(λ̃i)‖ ≤
2‖E‖
λ̃2i

.

As a result,∥∥∥eTl Ξ(λ̃i)U
∥∥∥+ ‖U‖2,∞

∥∥∥UTΞ(λ̃i)U
∥∥∥≤ (1 + ‖U‖2,∞)‖Ξ(λ̃i)‖ ≤

2‖E‖
λ̃2i

(1 + ‖U‖2,∞).

Continuing from (33) and (35), we further have∣∣∣eTl QΞ(λ̃i)Aũi
∣∣∣≤ 2b

b− 1

‖E‖
|λ̃i|

(1 + ‖U‖2,∞).(39)

Note by Weyl’s inequality, for i ∈ Jk, sK, |λ̃i| ≥ b−1
b σi and for i ∈ Jr + k, r + sK, |λ̃i| ≥

b−1
b σi−r . Continuing from (32) with (38) and (39), we conclude that

max
1≤l≤N

∥∥∥eTl (QΞ(λ̃i)Aũi)i∈I
∥∥∥

≤ 2
√

2
b2

(b− 1)2
(1 + ‖U‖2,∞)

√√√√ ∑
i∈Jk,sK,σi≤n2

γ2

σ2i
+

∑
i∈Jk,sK,σi>n2

‖E‖2
σ2i

.

Note that ‖E‖ ≤ 2(
√
N +
√
n)≤ 4

√
n. Inserting the above estimate and (31) into (30) yields

that∥∥∥Ũk,s − PUk,s
Ũk,s

∥∥∥
2,∞
≤ 3
√

2
(b+ 1)2

(b− 1)2
‖U‖2,∞

η
√
s− k+ 1

min{δk−1, δs}
1{s−k+16=r}

+
2
√

2b2

(b− 1)2
(1 + ‖U‖2,∞)

√√√√ ∑
i∈Jk,sK,σi≤n2

γ2

σ2i
+

∑
i∈Jk,sK,σi>n2

16n

σ2i
.

This concludes the proof by noting that ‖U‖2,∞ ≤ 1.

C.3. Proof of Theorem 2.11. The proof strategy for Theorem 2.11 mirrors that of Theo-
rem 2.10. We provide a brief outline below.

First, we estimate
∥∥∥xT(Ũk,s − PUk,s

Ũk,s)
∥∥∥ for a unit vector x ∈RN . Let a = (xT,0)T be

a unit vector in RN+n. Following the same line of the above proof, we first observe that∥∥∥xT(Ũk,s − PUk,s
Ũk,s)

∥∥∥=
∥∥∥aT(ŨI − PI ŨI)

∥∥∥ .
Using the same proof as that of (30), one gets∥∥∥aT(ŨI − PI ŨI)

∥∥∥≤ ‖aTPJ ŨI‖1{|J |6=0} + ‖aT(QΞ(λ̃i)Aũi)i∈I‖.(40)

For the first term on the right-hand side of (40), following the same line as (31), we have with
probability at least 1− 20(N + n)−K that

‖aTPJ ŨI‖ ≤ 3
√

2
(b+ 1)2

(b− 1)2
‖aTU‖ η

√
s− k+ 1

min{δk−1, δs}
1{|J |6=0}.
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For the second term on the right-hand side of (40), using the similar arguments as (32), we
also get with probability at least 1− 20(N + n)−K that

‖aT(QΞ(λ̃i)Aũi)i∈I‖ ≤
2
√

2b2

(b− 1)2
(1 + ‖aTU‖)

√√√√ ∑
i∈Jk,sK,σi≤n2

γ2

σ2i
+

∑
i∈Jk,sK,σi>n2

16n

σ2i
.

Combining the above estimates and noting that ‖aTU‖= ‖xTU‖, we conclude∥∥∥xT(Ũk,s − PUk,s
Ũk,s)

∥∥∥≤3
√

2
(b+ 1)2

(b− 1)2
‖xTU‖ η

√
s− k+ 1

min{δk−1, δs}
1{s−k+16=r}

+
2
√

2b2

(b− 1)2
(1 + ‖xTU‖)

√√√√ ∑
i∈Jk,sK,σi≤n2

γ2

σ2i
+

∑
i∈Jk,sK,σi>n2

16n

σ2i

with probability at least 1− 40(N + n)−K .
Next, we turn to the estimation of

∣∣∣xT(Ũk,s − PUk,s
Ũk,s)y

∣∣∣. Set b = (yT,0)T ∈R2(k−s+1).
It is elementary to check that∣∣∣xT(Ũk,s − PUk,s

Ũk,s)y
∣∣∣=√2

∣∣∣aT(ŨI − PI ŨI)b
∣∣∣ .

Using the decomposition in (29), we get∣∣∣aT(ŨI − PI ŨI)b
∣∣∣≤ ∣∣∣aTPJ ŨIb∣∣∣1{|J |6=0} +

∣∣∣aT(QΞ(λ̃i)Aũi)i∈Ib
∣∣∣ .(41)

When |J | 6= 0, taking the definitions of a,b into consideration, we can derive an upper bound
for the first term on the right-hand side of equation (41):∣∣∣aTPJ ŨIb∣∣∣= ∣∣∣aTUJ · UT

J ŨIb
∣∣∣≤ ‖aTUJ‖ · ‖UT

J ŨIb‖= ‖xTUJ0
‖

∥∥∥∥∥∑
i∈I0

yiUT
J ũi

∥∥∥∥∥
where J0 := J1, k − 1K ∪ Js+ 1, rK and I0 := Jk, sK. By Lemma C.2, we further obtain for
each i ∈ I0,

‖UT
J ũi‖ ≤ 3

(b+ 1)2

(b− 1)2
η

min{δk−1, δs}

with probability at least 1−20(N +n)−K . By Cauchy-Schwarz inequality, we further obtain∣∣∣aTPJ ŨIb∣∣∣≤ 3
(b+ 1)2

(b− 1)2
‖xTU‖

η
√
‖y‖0

min{δk−1, δs}
(42)

with probability at least 1− 20(N + n)−K .
For the second term on the right-hand side of equation (41), we start with∣∣∣aT(QΞ(λ̃i)Aũi)i∈Ib

∣∣∣= ∣∣∣∣∣∑
i∈I0

yia
TQΞ(λ̃i)Aũi

∣∣∣∣∣ .(43)

For each i ∈ I0, similar to (33), we have∣∣∣aTQΞ(λ̃i)Aũi
∣∣∣= ∣∣∣aT(I −UUT)Ξ(λ̃i)U · DUTũi

∣∣∣
≤
∥∥∥aT(I −UUT)Ξ(λ̃i)U

∥∥∥ · ∥∥DUTũi
∥∥ .
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Note that, by (34), ∥∥DUTũi
∥∥≤ b

b− 1
|λ̃i|.

With the same discussion after (35), for i ∈ I0 ∩ Is where Is :=
{
i ∈ I : |λi| ≤ n2

}
, the

estimation of∥∥∥aT(I −UUT)Ξ(λ̃i)U
∥∥∥≤ ∥∥∥aTΞ(λ̃i)U

∥∥∥+
∥∥∥aTUUTΞ(λ̃i)U

∥∥∥
≤
∥∥∥aTΞ(λ̃i)U

∥∥∥+ ‖xTU‖‖UTΞ(λ̃i)U‖

=

√√√√ 2r∑
s=1

(
aTΞ(λ̃i)us

)2
+ ‖xTU‖‖UTΞ(λ̃i)U‖

<
18b2

(b− 1)2

√
r(K + 7) log(N + n)

λ̃2i
(1 + ‖xTU‖)

=
2γ

λ̃2i
(1 + ‖xTU‖)

follows the same line as those of (35) and (37) with el replaced by the unit vector a. In
particular, combined with |λ̃i| ≥ b−1

b σi for each i ∈ I0 from the Weyl’s inequality, we obtain∣∣∣aTQΞ(λ̃i)Aũi
∣∣∣≤ ∥∥∥aT(I −UUT)Ξ(λ̃i)U

∥∥∥ · ∥∥DUTũi
∥∥

≤ 2b

b− 1

γ

|λ̃i|
(1 + ‖xTU‖)≤ 2b2

(b− 1)2
γ

σi
(1 + ‖xTU‖)

holds with probability at least 1 − 20(N + n)−K . Next, for i ∈ I0 ∩ Ib where Ib :={
i ∈ I : |λi|> n2

}
, similar to (39), we obtain∣∣∣aTQΞ(λ̃i)Aũi

∣∣∣≤ 2b2

(b− 1)2
‖E‖
σi

(1 + ‖xTU‖).

Continuing from (43), we have

∣∣∣aT(QΞ(λ̃i)Aũi)i∈Ib
∣∣∣≤ 2b2

(b− 1)2
(1 + ‖xTU‖)

 ∑
i∈Jk,sK,σi≤n2

γ|yi|
σi

+
∑

i∈Jk,sK,σi>n2

‖E‖
σi

 .
(44)

Finally, inserting (42) and (44) back into (41), we obtain that∣∣∣xT(Ũk,s − PUk,s
Ũk,s)y

∣∣∣=√2
∣∣∣aT(ŨI − PI ŨI)b

∣∣∣
≤ 3
√

2
(b+ 1)2

(b− 1)2
‖xTU‖

η
√
‖y‖0

min{δk−1, δs}
1{s−k+16=r}

+
2
√

2b2

(b− 1)2
(1 + ‖xTU‖)

 ∑
i∈Jk,sK,σi≤n2

γ|yi|
σi

+
∑

i∈Jk,sK,σi>n2

‖E‖
σi


holds with probability at least 1 − 40(N + n)−K . The proof is completing by noting that
‖xTU‖ ≤ ‖x‖ · ‖U‖ ≤ 1.
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C.4. Proof of Theorem 2.13. The proof of Theorem 2.13 follows largely the proof of
Theorem 2.10. We sketch the proof and focus on the difference. We start with the decompo-
sition (16):

ũi = Π(λ̃i)Aũi + Ξ(λ̃i)Aũi
and set

Π(λ̃i) :=

{
Φ(λ̃i), if |λi| ≤ n2;
1

λ̃i

IN+n + E
λ̃2
i

, if |λi|> n2.
(45)

The definition of Π(λ̃i) differs from the one given in (28) when |λi| > n2. We adopt this
definition to achieve more precise control over the error term by considering the weights |λ̃i|.

Let Q= I −Pr be the orthogonal projection matrix onto the null space of A. Using the
same derivation as in the beginning of the proof of Theorem 2.10, we obtain the decomposi-
tion

λ̃iũi =PI λ̃iũi +PJ λ̃iũi +QΞ(λ̃i)Aλ̃iũi
and hence

ŨID̃I −PI ŨID̃I =PJ ŨID̃I + (QΞ(λ̃i)Aλ̃iũi)i∈I .(46)

It can be verified using the definitions of ŨI , D̃I and PI = ŨI ŨT
I that

ŨID̃I −PI ŨID̃I =
1√
2

(
Ũk,sD̃k,s − PUk,s

Ũk,sD̃k,s −(Ũk,sD̃k,s − PUk,s
Ũk,sD̃k,s)

Ṽk,sD̃k,s − PVk,s
Ṽk,sD̃k,s Ṽk,sD̃k,s − PVk,s

Ṽk,sD̃k,s.

)
Therefore, combining (46), we observe that

‖Ũk,sD̃k,s − PUk,s
Ũk,sD̃k,s‖2,∞

= max
1≤i≤N

‖eTl (ŨID̃I −PI ŨID̃I)‖

= max
1≤i≤N

‖eTl (PJ ŨID̃I + (QΞ(λ̃i)Aλ̃iũi)i∈I)‖

≤ max
1≤i≤N

‖eTl PJ ŨID̃I‖1|J |6=0 + max
1≤i≤N

‖eTl (QΞ(λ̃i)Aλ̃iũi)i∈I)‖.(47)

The first term on the right-hand side of (47) can be bounded similarly as that of (31) using
Lemma C.2: if |J | 6= 0, then

max
1≤l≤N

‖eTl PJ ŨID̃I‖= max
1≤l≤N

‖eTl UJ · UT
J ŨID̃I‖

≤ max
1≤l≤N

‖eTl UJ‖ · ‖UT
J ŨID̃I‖

≤ ‖U‖2,∞‖UT
J ŨID̃I‖F = ‖U‖2,∞

√∑
i∈I

λ̃2i ‖UT
J ũi‖2

≤ 3
√

2
(b+ 1)2

(b− 1)2
‖U‖2,∞

ησk
√
s− k+ 1

min{δk−1, δs}

with probability at least 1− 20(N + n)−K .
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The bound of the second term on the right-hand side of (47) proceeds in a similar manner
to that of (32):

max
1≤i≤N

‖eTl (QΞ(λ̃i)Aλ̃iũi)i∈I)‖= max
1≤l≤N

√∑
i∈I

λ̃2i (e
T
l QΞ(λ̃i)Aũi)2.(48)

For each i ∈ I , we first establish the following bound using (33), (34) and (35):

|λ̃i| ·
∣∣∣eTl QΞ(λ̃i)Aũi

∣∣∣≤ b

b− 1
λ̃2i

(
‖eTl Ξ(λ̃i)U‖+ ‖U‖2,∞‖UTΞ(λ̃i)U‖

)
.(49)

We then differentiate the cases by splitting the discussion according to whether i ∈ I ∩ Is or
i ∈ I ∩ Ib, where

Is :=
{
i ∈ I : |λi| ≤ n2

}
and Ib :=

{
i ∈ I : |λi|> n2

}
.

If i ∈ I ∩ Is, then by (38), we immediately obtain

|λ̃i| ·
∣∣∣eTl QΞ(λ̃i)Aũi

∣∣∣≤ 2b

b− 1
γ(1 + ‖U‖2,∞)(50)

with probability at least 1− 20(N + n)−K .
If i ∈ I ∩ Ib, then the only difference from the proof of (39) is that

Ξ(λ̃i) =G(λ̃i)−
1

λ̃i
IN+n −

E
λ̃2i

and by Lemma 6.5, we have

‖Ξ(λ̃i)‖ ≤
2‖E‖2

|λ̃i|3
.

It follows that∥∥∥eTl Ξ(λ̃i)U
∥∥∥+ ‖U‖2,∞

∥∥∥UTΞ(λ̃i)U
∥∥∥≤ (1 + ‖U‖2,∞)‖Ξ(λ̃i)‖ ≤

2‖E‖2

|λ̃i|3
(1 + ‖U‖2,∞).

Continuing from (49), we further get

|λ̃i| ·
∣∣∣eTl QΞ(λ̃i)Aũi

∣∣∣≤ 2b

b− 1

‖E‖2

|λ̃i|
(1 + ‖U‖2,∞).(51)

Note by Weyl’s inequality, for i ∈ Jk, sK, |λ̃i| ≥ b−1
b σi and for i ∈ Jr + k, r + sK, |λ̃i| ≥

b−1
b σi−r . Inserting (50) and (51) back into (48), we obtain that with probability at least 1−

20(N + n)−K ,

max
1≤i≤N

‖eTl (QΞ(λ̃i)Aλ̃iũi)i∈I)‖

≤ 2
√

2b2

(b− 1)2
(1 + ‖U‖2,∞)

√√√√γ2(s− k+ 1) +
∑

i∈Jk,sK,σi>n2

‖E‖2
σi

≤ 4
√

2b2

(b− 1)2

√
γ2(s− k+ 1) + 16,

where we used ‖U‖2,∞ ≤ 1 and the crude estimate∑
i∈Jk,sK,σi>n2

‖E‖2

σi
≤ n16n

n2
= 16.

This concludes the proof.
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C.5. Proof of Lemma A.1. Throughout the proof, we work on the event ‖E‖ ≤ 2(
√
N +√

n) which holds with probability at least 1−C exp(−c(
√
N +

√
n)2) (see [12, Proposition

2.4]). Under this event, we have σk ≥ 2‖E‖. We adopt the linearization notation introduced
in Section 6.1.

For simplicity, denote I := J1, kK∪ Jr+ 1, r+ kK and J := J1,2rK \ I = Jk+ 1, rK∪ Jk+
r+ 1,2rK. Also, let I0 := J1,N + nK \ (I ∪ J) = J2r+ 1,N + nK.

We begin with these key identities:

‖ sin∠(UI , ŨI)‖2F = ‖ sin∠(Uk, Ũk)‖2F + ‖ sin∠(Vk, Ṽk)‖2F ,(52)

‖ sin∠(UI , ŨI)‖= max{‖ sin∠(Uk, Ũk)‖,‖ sin∠(Vk, Ṽk)‖}.(53)

These follow from the observation that the principal angles between the subspaces UI and ŨI
are composed of the principal angles between Uk and Ũk and those between Vk and Ṽk (see
Proposition 8 from [9] for a detailed proof). Therefore, it suffices to work with the subspaces
UI and ŨI .

Let ||| · ||| denote either the Frobenius or operator norm. By applying (11), we have

||| sin∠(UI , ŨI)|||= |||PIcP̃I |||= |||PJ P̃I +PI0P̃I ||| ≥max{|||PJ P̃I |||, |||PI0P̃I |||},

where the last inequality follows from the orthogonality PJPI0 = 0. To establish a lower
bound on ||| sin∠(UI , ŨI)|||, we focus on bounding |||PI0P̃I ||| from below.

Let PI0 = UI0UT
I0

. From (19), we obtain UT
I0
EŨID̃−1I = UTI0ŨI , which is equivalent to

PI0ŨI =PI0EŨID̃−1I . By the triangle inequality and (10), we derive

|||PI0P̃I |||= |||PI0ŨI |||= |||PI0EŨID̃−1I ||| ≥ |||PI0EUIOD̃
−1
I ||| − |||PI0E(UIO− ŨI)D̃−1I |||.

(54)

Here, O is an orthogonal matrix defined as follows. Let

O1 := arg min
O∈Ok×k

‖UkO− Ũk‖F and O2 := arg min
O∈Ok×k

‖VkO− Ṽk‖F .

Set

O :=
1

2

(
O1 +O2 O1 −O2

O1 −O2 O1 +O2

)
.

Since O1,O2 are orthogonal matrices, it is straightforward to verify that O is orthogonal.

Using the block structure of PI0 , we can write PI0 =

(
Q1 0
0 Q2

)
, where Q1 and Q2 are

the orthogonal projections onto U⊥ and V ⊥, respectively. Using the definition of UI , we
compute

UIO =
1√
2

(
UkO1 UkO1

VkO2 −VkO2

)
.

Consequently, with the definitions of E , ŨI and D̃I , we further obtain

PI0EUIOD̃−1I =
1√
2

(
Q2E

TUkO1D̃
−1
k −Q2E

TUkO1D̃
−1
k

Q1EVkO2D̃
−1
k Q1EVkO2D̃

−1
k

)
(55)

and

(UIO− ŨI)D̃−1I =
1√
2

(
(UkO1 − Ũk)D̃−1k −(UkO1 − Ũk)D̃−1k
(VkO2 − Ṽk)D̃−1k (VkO2 − Ṽk)D̃−1k

)
.(56)
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For the Frobenius norm, we continue from (54) to get

‖ sin∠(UI , ŨI)‖F ≥ ‖PI0P̃I‖F ≥ ‖PI0EUIOD̃−1I ‖F − ‖E‖‖(UIO− ŨI)D̃
−1
I ‖F .(57)

For the first term on the right-hand side of (57), (55) yields

‖PI0EUIOD̃−1I ‖F =

√
‖Q2ETUkO1D̃

−1
k ‖2F + ‖Q1EVkO2D̃

−1
k ‖2F

=

√√√√ k∑
i=1

1

σ̃2i
(‖Q2ETûi‖2 + ‖Q1Ev̂i‖2),(58)

where we denote the columns of UkO1, VkO2 as ûi, v̂i (1 ≤ i ≤ k) respectively. Note that
ûi, v̂i are deterministic unit vectors.

By the projection lemma from [7, Lemma 11.8], for each i and any t > 0,

P
(
|‖Q1Ev̂i‖2 − (N − r)| ≥ t

)
≤C exp

(
−min

{ t2

N − r
, t
})

and similarly,

P
(
|‖Q2E

Tûi‖2 − (n− r)| ≥ t
)
≤C exp

(
−min

{ t2

n− r
, t
})

.

Here, the constant C > 0 depends on the sub-gaussian norm of the entries of E.
Therefore, with probability at least 1− Ck exp(−1

4(n− r))− Ck exp(−1
4(N − r)), we

have for every 1≤ i≤ k,

‖Q1Ev̂i‖2 ≥
1

2
(N − r) and ‖Q2E

Tûi‖2 ≥
1

2
(n− r).

Using σ̃i ≤ 3
2σi by Weyl’s inequality and our assumption that ‖E‖ ≤ 1

2σi, continuing from
(58) gives

‖PI0EUIOD̃−1I ‖F ≥
√

2

3

√
N + n− 2r

√√√√ k∑
i=1

1

σ2i
.

For the second term on the right-hand side of (57), by (56), we have

‖(UIO− ŨI)D̃−1I ‖F =

√
‖(UkO1 − Ũk)D̃−1k ‖2F + ‖(VkO2 − Ṽk)D̃−1k ‖2F

≤ 1

σ̃k

√
‖(UkO1 − Ũk)‖2F + ‖(VkO2 − Ṽk)‖2F

≤ 2
√

2
1

σk

√
‖ sin∠(Uk, Ũk)‖2F + ‖ sin∠(Vk, Ṽk)‖2F

= 2
√

2
1

σk
‖ sin∠(UI , ŨI)‖F ,

where in the last inequality, we used (12) and σ̃k ≥ 1
2σk by Weyl’s inequality.

Combining the above discussion with (57), we obtain

‖ sin∠(UI , ŨI)‖F ≥
√

2

3

√
N + n− 2r

√√√√ k∑
i=1

1

σ2i
− 2
√

2
‖E‖
σk
‖ sin∠(UI , ŨI)‖F

≥
√

2

3

√
N + n− 2r

√√√√ k∑
i=1

1

σ2i
−
√

2‖ sin∠(UI , ŨI)‖F
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due to ‖E‖/σk ≤ 1/2. Rearranging the terms, we arrive at

‖ sin∠(UI , ŨI)‖F ≥
√

2

3(1 +
√

2)

√
N + n− 2r

√√√√ k∑
i=1

1

σ2i

with probability at least 1 − Ck exp(−1
4(n − r)) − Ck exp(−1

4(N − r)). The final result
follows from (52):

max{‖ sin∠(Uk, Ũk)‖F ,‖ sin∠(Vk, Ṽk)‖F } ≥
√
N + n− 2r

3(1 +
√

2)

√√√√ k∑
i=1

1

σ2i
.

Finally, the operator norm bound follows from ‖ sin∠(UI , ŨI)‖ ≥ 1√
2k
‖ sin∠(UI , ŨI)‖F

and (53), yielding

max{‖ sin∠(Uk, Ũk)‖,‖ sin∠(Vk, Ṽk)‖}= ‖ sin∠(UI , ŨI)‖ ≥
√
N + n− 2r

3(1 +
√

2)
√
k

√√√√ k∑
i=1

1

σ2i
.

This concludes the proof.

D. Proofs of Theorems 2.6 and 2.7.

D.1. Proof of Theorem 2.6. By the min-max theorem, for an N × n matrix S, the jth
largest singular value of S is

σj(S) = max
W∈RN ,dim(W )=j
K∈Rn,dim(K)=j

min
(x,y)∈W×K
‖x‖=‖y‖=1

xTSy.(59)

For the lower bound (8) of σ̃k, by (59),

σ̃k ≥ min
(x,y)∈Uk×Vk

‖x‖=‖y‖=1

xT (A+E)y ≥ σk − max
(x,y)∈Uk×Vk

‖x‖=‖y‖=1

|xTEy|.

Note that

‖UTk EVk‖= max
(x,y)∈Uk×Vk

‖x‖=‖y‖=1

|xTEy|.

Our assumption immediately yields that σ̃k ≥ σk − t with probability at least 1− ε.
For the upper bound (9) of σ̃k, by (59),

σk ≥ σ̃k − max
(x,y)∈Ũk×Ṽk

‖x‖=‖y‖=1

|xTEy|.(60)

It is enough to bound the second term on the right side. For any unit vectors x ∈ Ũk and
y ∈ Ṽk, we decompose x= PU⊥x+UUTx and y = PV ⊥y+V V T ỹ. It follows from triangle
inequality that

|xTEy| ≤ ‖PU⊥x‖ · ‖PV ⊥y‖ · ‖E‖+ (‖PU⊥x‖+ ‖PV ⊥y‖)‖E‖+ ‖UTEV ‖.

To bound the term ‖PU⊥x‖, first notice by Cauchy-Schwarz inequality,

max
x∈Ũk,‖x‖=1

‖PU⊥x‖ ≤
√
k max
1≤s≤k

‖PU⊥ ũs‖.
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Next, multiplying PU⊥ on the left side of the equation (A+E)ṽs = σ̃sũs, we get PU⊥Eṽs =
σ̃sPU⊥ ũs. It follows that

max
1≤s≤k

‖PU⊥ ũs‖ ≤ ‖E‖/σ̃k(61)

and thus

max
x∈Ũk,‖x‖=1

‖PU⊥x‖ ≤
√
k‖E‖/σ̃k.

The same calculation leads to

max
y∈Ṽk,‖y‖=1

‖PV ⊥y‖ ≤
√
k‖E‖/σ̃k.

Therefore,

max
(x,y)∈Ũk×Ṽk

‖x‖=‖y‖=1

|xTEy| ≤ 2
√
k
‖E‖2

σ̃k
+ k
‖E‖3

σ̃2k
+ ‖UTEV ‖.(62)

Since ‖UTEV ‖ ≤ L and ‖E‖ ≤ B with probability at least 1 − ε, by (60) and (62), we
obtain, with probability at least 1− ε

σ̃k ≤ σk + 2
√
k
B2

σ̃k
+ k

B3

σ̃2k
+L.

D.2. Proof of Theorem 2.7. In the proof, we work on the event

Ω := {‖E‖ ≤B and ‖UTEV ‖ ≤ L}.

By the supposition, Ω holds with probability at least 1 − ε. Observe that ‖UTk EVk‖ ≤
‖UTEV ‖ ≤ L. Using (8), the lower bound for σ̃k, together with δk ≥ 2L, we have

σ̃k ≥ σk −L≥ σk/2> 0

and

σ̃k − σk+1 = σ̃k − σk + δk ≥ δk −L≥ δk/2.

From (11) and triangle inequality, we see

||| sin∠(Uk, Ũk)|||= |||PU⊥k PŨk
||| ≤ |||PU⊥PŨk

|||+ |||PUk+1,r
PŨk
|||1{k<r}.(63)

We first bound the first term on the right-hand side of (63). Suppose PU⊥ = U0U0
T where

the columns of U0 are an orthonormal basis of the subspace U⊥. Then

|||PU⊥PŨk
|||= |||UT

0 Ũk|||.

Multiplying UT
0 on the both sides of (A+E)Ṽk = ŨkD̃k, we see UT

0 EṼk = UT
0 ŨkD̃k and

hence, UT
0 Ũk = UT

0 EṼkD̃
−1
k . It follows that

|||PU⊥PŨk
|||= |||UT

0 EṼkD̃
−1
k ||| ≤ |||U

T
0 EṼk|||‖D̃−1k ‖=

|||PU⊥EPṼk
|||

σ̃k
.(64)

In particular, for the operator norm, we have

‖PU⊥PŨk
‖ ≤ ‖E‖

σ̃k
.(65)
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We proceed to bound the second term on the right-hand side of (63). It suffices to consider
k < r. Observe that

|||PUk+1,r
PŨk
|||= |||UT

k+1,rŨk||| ≤ ‖UT
k+1,rŨk‖∗

≤
√

rank(Uk+1,r
TŨk)‖UT

k+1,rŨk‖F

≤
√

min{k, r− k}

√√√√ k∑
i=1

‖UT
k+1,rũi‖2.

In particular, for the operator norm, we have

‖PUk+1,r
PŨk
‖ ≤ ‖UT

k+1,rŨk‖F =

√√√√ k∑
i=1

‖UT
k+1,rũi‖2.

It remains to bound ‖UT
k+1,rũi‖ for 1≤ i≤ k. Multiplying UT

k+1,r on both sides of (A+

E)ṽi = σ̃iũi, we get

Dk+1,rV
T
k+1,rṽi +UT

k+1,rEṽi = σ̃iU
T
k+1,rũi,

which yields

σ̃iDk+1,rV
T
k+1,rṽi = σ̃2i U

T
k+1,rũi − σ̃iUT

k+1,rEṽi.(66)

Similarly, multiplying V T
k+1,r on both sides of (AT +ET)ũi = σ̃iṽi, we also get

Dk+1,rU
T
k+1,rũi + V T

k+1,rE
TŨi = σ̃iV

T
k+1,rṽi,

which implies

σ̃iDk+1,rV
T
k+1,rṽi =D2

k+1,rU
T
k+1,rũi +Dk+1,rV

T
k+1,rE

Tũi.(67)

Combining (66) and (67), one has

(σ̃2i I −D2
k+1,r)U

T
k+1,rũi = σ̃iU

T
k+1,rEṽi +Dk+1,rV

T
k+1,rE

Tũi.

As a result, by noting σ̃2i I−D2
k+1,r = diag(σ̃2i −σ2k+1, · · · , σ̃2i −σ2r ), we obtain the following

bound

‖UT
k+1,rũi‖ ≤

σ̃i‖UT
k+1,rEṽi‖+ σk+1‖V T

k+1,rE
Tũi‖

σ̃2i − σ2k+1

≤
max{‖UT

k+1,rEṽi‖,‖V T
k+1,rE

Tũi‖}
σ̃k − σk+1

.(68)

Now we turn to bound the numerator of the above expression. Decompose ũi = PU ũi +
PU⊥ ũi. Then

V T
k+1,rE

Tũi = V T
k+1,rE

TUUTũi + V T
k+1,rE

TPU⊥ ũi

and

‖V T
k+1,rE

Tũi‖ ≤ ‖V T
k+1,rE

TU‖+ ‖ET‖ · ‖PU⊥ ũi‖

≤ ‖UTEV ‖+
‖E‖2

σ̃k
.
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The last inequality above follows from ‖PU⊥ ũi‖ ≤ ‖PU⊥PŨk
‖ and by applying (65). Like-

wise, we also have

‖UT
k+1,rEṽi‖ ≤ ‖UTEV ‖+

‖E‖2

σ̃k
.

Continuing from (68), we see

‖UT
k+1,rũi‖ ≤

‖UTEV ‖+ ‖E‖2/σ̃k
σ̃k − σk+1

≤ 2
‖UTEV ‖

δk
+ 4
‖E‖2

δkσk

by plugging in σ̃k − σk+1 ≥ δk/2 and σ̃k ≥ σk/2. Consequently,

|||PUk+1,r
PŨk
||| ≤

√
min{k, r− k}

√√√√ k∑
i=1

‖Uk+1,r
Tũi‖2

≤ 2
√
kmin{k, r− k}

(
‖UTEV ‖

δk
+ 2
‖E‖2

δkσk

)
.

In particular, for the operator norm,

‖PUk+1,r
PŨk
‖ ≤

√√√√ k∑
i=1

‖Uk+1,r
Tũi‖2 ≤ 2

√
k

(
‖UTEV ‖

δk
+ 2
‖E‖2

δkσk

)
.

Combining the above estimates with (64), and considering (63), we ultimately arrive at

||| sin∠(Uk, Ũk)||| ≤ 2
√
kmin{k, r− k}

(
‖UTEV ‖

δk
+ 2
‖E‖2

δkσk

)
+
|||PU⊥EPṼk

|||
σ̃k

≤ 2
√
kmin{k, r− k}

(
‖UTEV ‖

δk
+ 2
‖E‖2

δkσk

)
+ 2

k‖E‖
σk

.

More specifically, for the operator norm, we have

‖ sin∠(Uk, Ũk)‖ ≤ 2
√
k

(
‖UTEV ‖

δk
+ 2
‖E‖2

δkσk

)
1{k<r} + 2

‖E‖
σk

.

By applying the result to AT and AT +ET, we observe that the same bounds also hold for
sin∠(Vk, Ṽk). This concludes the proof.

E. Proof of Theorem 5.1. We consider the model (17) and rewrite

E(X) = (θz1 , · · · , θzn) = (θ1, · · · , θk)ZT,

where Z ∈ {0,1}n×k with entry Zij = 1 if zi = j and Zij = 0 otherwise. It is clear that the
information regarding the cluster labels z is entirely encoded within Z . Additionally, let D =
diag(d1, · · · , dk) where di represents the cluster size associated with center θi. Consequently,
the matrix ZD−1/2 has orthonormal columns.

Given that θi’s could be colinear, the rank of E(X) or (θ1, · · · , θk), denoted as r, could be
smaller than the number of clusters k. Consider the SVD of

(θ1, · · · , θk)D1/2 = UΛWT,
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where Λ is a k× k diagonal matrix with rank r and W is a k× k orthogonal matrix. Observe
that if we denote the SVD of E(X) as E(X) = UΣV T with U ∈ Rp×k and V ∈ Rn×k, then
the following relationship emerges:

E(X) = (θ1, · · · , θk)D1/2(ZD−1/2)T = UΛ(ZD−1/2W )T = UΣV T.

Therefore, Σ = Λ = diag(σ1, · · · , σr,0, · · · ,0) and V = ZD−1/2W . Note that the choice of
U,V is not unique and we can only decide U or V up to an orthogonal transformation.

Next, we show that the geometric relationship among the columns of E(X) is preserved
among the columns of UTE(X). Consider the SVD of E(X) = UΣV T, where each column
θj of E(X) can be expressed as θj = UΣ(V T)j by denoting (V T)j as the column of V T.
Let (UTE(X))j represent the columns of UTE(X) = (UTθz1 , · · · ,UTθzn). For any two
columns θi and θj of E(X), we have

‖θi − θj‖2 = (θi − θj)T(θi − θj) =
(
(V T)i − (V T)j

)T
Σ2
(
(V T)i − (V T)j

)
Moreover, their corresponding columns (UTE(X))i and (UTE(X))j of UTE(X) satisfy

‖(UTE(X))i − (UTE(X))j‖2 = ‖UTθi −UTθj‖2 = (θi − θj)TUUT(θi − θj)

=
(
(V T)i − (V T)j

)T
ΣUTUUTUΣ

(
(V T)i − (V T)j

)
= ‖θi − θj‖2.

It follows that

‖(UTE(X))i − (UTE(X))j‖= ‖θi − θj‖.

Therefore, if i, j ∈ [n] belong to the same cluster, then ‖(UTE(X))i − (UTE(X))j‖ =
0. On the other hand, if i, j ∈ [n] belong to the distinct clusters, then ‖(UTE(X))i −
(UTE(X))j‖ ≥∆.

The main step of the proof, as explained in Section 5.1, is to prove (18). Specifically, we
aim to show that

max
1≤j≤n

‖(ŨTk X)j − (UTE(X))j‖<
1

5
∆(69)

holds with high probability.
Recall that throughout the paper, we always assume ‖E‖ ≤ 2(

√
n+
√
p). We start with

the decompositions

UTE(X) = ΛV T =

(
ΛrV

T
r

0

)
and

ŨTr X = Λ̃kṼ
T
k =

(
Λ̃rṼ

T
r

Λ̃Jr+1,kKṼ
T
Jr+1,kK

)
.

Observe that

‖Λ̃Jr+1,kKṼ
T
Jr+1,kK‖ ≤ σ̃r+1 ≤ ‖E‖ ≤

1

20
∆

by Weyl’s inequality and ∆≥ σr ≥ 20‖E‖ from the supposition. Hence,

max
1≤j≤n

‖(ŨTk X)j − (UTE(X))j‖

≤ max
1≤j≤n

(
‖(Λ̃rṼ T

r )j − (ΛrV
T
r )j‖+ ‖(Λ̃Jr+1,kKṼ

T
Jr+1,kK)j‖

)
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≤ max
1≤j≤n

‖(Λ̃rṼ T
r )j − (ΛrV

T
r )j‖+

1

20
∆

= max
1≤j≤n

‖eTj ṼrΛ̃r − eTj VrΛr‖+
1

20
∆ = ‖ṼrΛ̃r − VrΛr‖2,∞ +

1

20
∆

≤ ‖ṼrΛ̃r − VrΛ̃r‖2,∞ + ‖Vr(Λ̃r −Λr)‖2,∞ +
1

20
∆.(70)

Due to non-uniqueness of the choice of V in the SVD of E(X), we choose a specified Vr
such that the conclusion of Corollary 2.14 holds (with b = 20): that is, with probability at
least 1− 40(N + n)−L,

‖ṼrΛ̃r − VrΛ̃r‖2,∞ ≤ 45r
√

(L+ 7) log(n+ p)(1 + ‖Vr‖2,∞) + 8‖Vr‖2,∞
(
√
n+
√
p)2

σr
.

Note that

‖Vr‖2,∞ ≤ ‖V ‖2,∞ = max
i
‖eTi V ‖= max

i

√√√√ 1

dzi

k∑
j=1

W 2
zi,j
≤ 1
√
cmin

≤ 1.

Continuing from (70), we further obtain

max
1≤j≤n

‖(ŨTk X)j − (UTE(X))j‖

≤ ‖ṼrΛ̃r − VrΛ̃r‖2,∞ + ‖Vr‖2,∞‖Λ̃r −Λr‖+
1

20
∆

≤ 90k
√

(L+ 7) log(n+ p) +
8(
√
n+
√
p)2

√
cminσr

+
2(
√
n+
√
p)

√
cmin

+
1

20
∆

≤ 1

20
∆ +

1

200
∆ +

1

20
∆ +

1

20
∆<

1

5
∆

by Weyl’s inequality ‖Λ̃r −Λr‖ ≤ ‖E‖ and the suppositions that σr ≥ 40(
√
n+
√
p) and

∆≥max

{
40(
√
n+
√
p)

√
cmin

,1800k
√

(L+ 7) log(n+ p)

}
.

This concludes the proof.

F. Proofs of (12), (13), Proposition B.6 and (14).

F.1. Proof of (12). It follows from (9) that for the Schatten p-norm with p≥ 2,

min
O∈Or×r

‖UO− V ‖2p = min
O∈Or×r

‖(UO− V )T(UO− V )‖p/2

= min
O∈Or×r

‖2Ir −OTUTV − V TUO‖p/2.(71)

Note that the SVD of UTV can be written as OT
1 cos ΘO2 where O1,O2 are orthogonal

matrices and cos Θ := cos∠(U,V ) = diag(cosθ1, · · · , cosθr). Continuing from (71), by the
definition of unitarily invariant norms, we further have

(71) = min
O∈Or×r

‖2Ir − cos Θ ·O2O
TOT

1 −O1OO
T
2 cos Θ‖p/2

≤ ‖2Ir − 2 cos Θ‖p/2 = 2

(
r∑
i=1

(1− cosθi)
p/2

)2/p
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≤ 2

(
r∑
i=1

sinp θi

)2/p

= 2‖ sin Θ‖2p,

where we denote sin Θ := sin∠(U,V ). In the first inequality, we choose O = OT
1 O2. The

second inequality follows from 1− cosθi ≤ 1− cos2 θi = sin2 θi.
For the lower bound, we still consider

(71) = min
O∈Or×r

‖2Ir − cos Θ ·O2O
TOT

1 −O1OO
T
2 cos Θ‖p/2

= min
Y ∈Or×r

‖2Ir − cos Θ · Y − Y T cos Θ‖p/2 := min
Y ∈Or×r

‖BY ‖p/2.

Observe that BY is positive semidefinite. To see this, let x be an arbitrary unit vector in Rr
and we have

xTBY x= 2− 2xT cos Θ · Y x≥ 2(1− |xT cos Θ · Y x|)≥ 2(1− ‖ cos Θ‖)≥ 0.

Denote p′ = p/2 for brevity. We use the following variational formula for the Schatten norms
of positive semidefinite matrices:

‖BY ‖p′ = max
‖X‖q′≤1

tr(BYX),(72)

where ‖X‖q′ is the Schatten-q′ norm of X ∈ Rr×r and 1
p′ + 1

q′ = 1. To prove (72), by the
Hölder’s inequality for Schatten norms,

max
‖X‖q′≤1

tr(BYX)≤ ‖BY ‖p′ max
‖X‖q′≤1

‖X‖q′ ≤ ‖BY ‖p′ .

On the other hand, taking X =Bp′−1
Y /‖Bp′−1

Y ‖q′ ,

max
‖X‖q′≤1

tr(BYX)≥ tr(Bp′

Y )/‖Bp′−1
Y ‖q′ = ‖BY ‖p

′

p′/‖BY ‖
p′−1
p′ = ‖BY ‖p′ ,

where we used tr(Bp′

Y ) = ‖BY ‖p
′

p′ since BY is positive semidefinite and ‖Bp′−1
Y ‖q′ =

‖BY ‖p
′−1
p′ due to 1

p′ + 1
q′ = 1. This proves (72).

Set S = sin2 Θ for simplicity and let

X =
Sp
′−1

‖Sp′−1‖q′
=

Sp
′−1

‖S‖p
′−1
p′

.

We continue from (72):

‖BY ‖p′ ≥ tr
(
2X − cos Θ · Y X − Y T cos ΘX

)
= 2 tr(X −X cos Θ · Y )

≥ 2 (tr(X)− ‖X cos Θ‖∗) ,

where we applied Hölder’s inequality |tr(X cos Θ · Y )| ≤ ‖Y ‖ · ‖X cos Θ‖∗ = ‖X cos Θ‖∗.
Plugging in X and S, we get

‖BY ‖p′ ≥
2

‖S‖p
′−1
p′

(
tr(Sp

′−1)− ‖Sp′−1 cos Θ‖∗
)

=
2

‖ sin2 Θ‖p
′−1
p′

(
r∑
i=1

(sinθi)
2(p′−1)(1− cosθi)

)
.
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Note that ‖ sin2 Θ‖p
′−1
p′ = ‖ sin Θ‖2(p

′−1)
2p′ and

1− cosθi = 2 sin2(θi/2) =
sin2 θi

2 cos2(θi/2)
≥ 1

2
sin2 θi.

We further obtain

‖BY ‖p′ ≥
1

‖ sin Θ‖2(p
′−1)

2p′

r∑
i=1

(sinθi)
2p′ =

‖ sin Θ‖2p
′

2p′

‖ sin Θ‖2(p
′−1)

2p′

= ‖ sin Θ‖22p′ = ‖ sin Θ‖2p.

Therefore,

(71) = min
Y ∈Or×r

‖BY ‖p/2 ≥ ‖ sin Θ‖2p.

This completes the proof of (12).

F.2. Proof of (13). For simplicity, denote cos Θ = cos∠(U,V ) and sin Θ = sin∠(U,V ).
Note that for any orthogonal matrices Y,Z ∈Rr×r ,

|||UY ZT − V |||= |||UY − V Z|||.

We use [1, Theorem VII.1.8]: there exist r×r orthogonal matrices Y,Z and n×n orthogonal
matrix Q such that if 2r ≤ n, then

QUY =

Ir0
0

 and QUZ =

cos Θ
sin Θ

0

 .

Hence,

min
O∈Or×r

|||UO− V ||| ≤ |||UY ZT − V |||= |||QUY −QV Z|||= |||
(
Ir − cos Θ
− sin Θ

)
|||.

If 2r > n, then

QUY =

In−r 0
0 I2r−n
0 0

 and QUZ =

cos Θ1 0
0 I2r−n

sin Θ1 0

 ,

where Θ1 is a diagonal matrix composed of the largest n− r diagonal entries of Θ (note that
the remaining diagonal entries of Θ are all zero). Therefore, by unitary equivalent, we still
have

(73) min
O∈Or×r

|||UO− V ||| ≤ |||UY ZT − V |||= |||QUY −QV Z|||= |||
(
Ir − cos Θ
− sin Θ

)
|||.

Note that the matrix on the right-hand side of (73) has singular values√
(1− cosθi)2 + sin2 θi = 2 sin

(
θi
2

)
for i= 1, · · · , r. Then by Theorem B.2,

min
O∈Or×r

|||UO− V ||| ≤ f(2 sin(θ1/2), · · · ,2 sin (θr/2))

for the symmetric gauge function f associated with the norm. Combining the above fact
with the inequality sin(θ/2) = 1

2
sinθ

cos(θ/2) ≤
sinθ√

2
for θ ∈ [0, π/2] and Theorem B.4, we get the

bound

min
O∈Or×r

|||UO− V ||| ≤ f(
√

2 sin(θ1), · · · ,
√

2 sin(θr)) = |||
√

2 sin∠(U,V )|||.
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F.3. Proof of Proposition B.6. For any orthogonal matrix O, we first have

‖xT(V −UO)‖ ≤ ‖xT(V − PUV )‖+ ‖xT(UUTV −UO)‖

= ‖xT(V − PUV )‖+ ‖xTU(UTV −O)‖

≤ ‖xT(V − PUV )‖+ ‖xTU‖‖UTV −O‖.

It remains to estimate ‖UTV −O‖. Now consider a specific orthogonal matrix O =O1O
T
2 ,

where as per (14), we have UTV =O1 cos∠(U,V )OT
2 . Hence,

‖UTV −O‖= ‖O1 cos∠(U,V )OT
2 −O1O

T
2 ‖= ‖ cos∠(U,V )− Ir‖

= 1− cosθr ≤ 1− cos2 θr = sin2 θr = ‖ sin∠(U,V )‖2.

Putting these estimates together, we arrive at

‖xT(V −UO)‖ ≤ ‖xT(V − PUV )‖+ ‖xTU‖‖ sin∠(U,V )‖2.

The other inequalities can be proved immediately by noting that∣∣xT(V −UO)y
∣∣≤ ∣∣xT(V − PUV )y

∣∣+ ∣∣xT(UUTV −UO)y
∣∣

≤
∣∣xT(V − PUV )y

∣∣+ ‖xTU‖‖UTV −O‖

and

‖V −UO‖2,∞ ≤ ‖V − PUV ‖2,∞ + ‖UUTV −UO‖2,∞

≤ ‖V − PUV ‖2,∞ + ‖U‖2,∞‖UTV −O‖.

F.4. Proof of (14). As in (14), from the SVD of UT
k Ũk = O1 cos∠(Uk, Ũk)O

T
2 ,

we choose the orthogonal matrix O = O1O
T
2 . For notational simplicity, let us denote

cos∠(Uk, Ũk) = diag(cosθ1, · · · , cosθk) := cos Θ.
Using a similar argument as in the proof of Proposition B.6, we obtain

‖ŨkD̃k −UkOD̃k‖2,∞ ≤‖ŨkD̃k − PUk
ŨkD̃k‖2,∞ + ‖Uk‖2,∞‖(UT

k Ũk −O)D̃k‖.(74)

It suffices to establish a bound for ‖(UT
k Ũk −O)D̃k‖ in the second term on the right-hand

side of (74). A similar bound for the case k = r has been previously established in [15,
Lemma 15]. We generalize the proof from [15, Lemma 15] here with explicit constants.

Let U0 denote the matrix whose columns are orthonormal and span the complement of the
subspace Uk. We first show that

O−UT
k Ũk = 2O1 · sin(Θ/2) · (sin Θ)−1 sin(Θ/2) ·OT

3 U
T
0 Ũk(75)

for some orthogonal matrix O3. Here, sin(Θ/2) = diag(sin(θ1/2), · · · , sin(θk/2)) and

(sin Θ)−1 sin(Θ/2) = diag

(
sin(θ1/2)

sin(θ1)
, · · · , sin(θk/2)

sin(θk)

)
.

To see (75), since

(ŨT
k U0)(Ũ

T
k U0)

T = ŨT
k U0U

T
0 Ũk = ŨT

k (I −UkUT
k )Ũk

= I −O2 cos2(Θ)OT
2 =O2 sin2(Θ)OT

2 ,

the SVD of ŨT
k U0 is given by

ŨT
k U0 =O2(sin Θ)OT

3(76)
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for some orthogonal matrix O3. Combining (76) with

O−UT
k Ũk =O1(I − cos Θ)OT

2 = 2O1 sin2(Θ/2)OT
2 ,

we prove (75) and consequently

(O−UT
k Ũk)D̃k = 2O1 · sin(Θ/2) · (sin Θ)−1 sin(Θ/2) ·OT

3 U
T
0 ŨkD̃k.(77)

To bound ‖(O−UT
k Ũk)D̃k‖, first observe

‖ sin(Θ/2)‖ ≤
√

2

2
‖ sin Θ‖ and ‖(sin Θ)−1 sin(Θ/2)‖ ≤

√
2

2

by the facts that cos(θ/2)≥ 1/
√

2 and sin(θ/2) = sinθ
2cos(θ/2) ≤

√
2
2 sinθ for θ ∈ [0, π/2]. Then

continuing from (77), we have

‖(O−UT
k Ũk)D̃k‖ ≤ ‖ sin Θ‖ · ‖UT

0 ŨkD̃k‖.

It remains to bound ‖UT
0 ŨkD̃k‖. Let us denote Dk+1,r = diag(σk+1, · · · , σr) and Uk+1,r =

(uk+1, · · · , ur). Define Vk+1,r analogously. Since ŨkD̃k = ÃṼk = (A+E)Ṽk, we have

‖UT
0 ŨkD̃k‖= ‖UT

0 (A+E)Ṽk‖ ≤ ‖UT
0 AṼk‖+ ‖UT

0 EṼk‖

≤ ‖Dk+1,rV
T
k+1,rṼk‖+ ‖E‖

≤ σk+1‖ sin∠(Vk, Ṽk)‖+ ‖E‖.

To obtain the last inequality above, let V0 be the matrix whose columns are orthonormal and
span the complement of the subspace Vk. Then

‖Dk+1,rV
T
k+1,rṼk‖ ≤ σk+1‖V T

k+1,rṼk‖ ≤ σk+1‖V T
0 Ṽk‖= σk+1‖PV ⊥k PṼk

‖

≤ σk+1‖PVk
− PṼk

‖= σk+1‖ sin∠(Vk, Ṽk)‖.

We obtain that

‖(O−UT
k Ũk)D̃k‖ ≤ ‖ sin∠(Uk, Ũk)‖

(
σk+1‖ sin∠(Vk, Ṽk)‖+ ‖E‖

)
.

This completes the proof.

F.4.1. Comparing ‖ŨrD̃r −UOD̃r‖2,∞ and ‖ŨrD̃rO
T−UD‖2,∞. This section exam-

ines the connections between the quantity ‖ŨrD̃r − UOD̃r‖2,∞ studied in this paper and
‖ŨrD̃rO

T − UD‖2,∞ found in prior works (e.g., Proposition 3 in [15]). The orthogonal
matrix O :=O1O

T
2 is derived from the SVD of UTŨr =O1 cos∠(U, Ũr)O

T
2 . By rewriting

ŨrD̃rO
T −UD = (ŨrD̃r −UOD̃r)O

T +U(OD̃rO
T −D),

we observe that (since ‖MO‖2,∞ ≤ ‖M‖2,∞ for any orthogonal matrix O)∣∣∣‖ŨrD̃rO
T −UD‖2,∞ − ‖ŨrD̃r −UOD̃r‖2,∞

∣∣∣≤ ‖U‖2,∞‖OD̃rO
T −D‖.

While establishing a tight analytical bound on ‖D̃rO
T −OTD‖= ‖OD̃rO

T −D‖ remains
challenging, our numerical experiments in Figure 6 demonstrate that ‖D̃rO

T − OTD‖ is
comparable in magnitude to ‖RD̃rO

T − D‖, where R := XY T is an orthogonal matrix
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derived from the SVD of V TṼr = X cos∠(V, Ṽr)Y
T. As shown in [15, Lemma 16], with

high probability

‖RD̃rO
T −D‖. ‖E‖

2

σr
+
√
r+ log(N + n).

Our numerical results suggest that a similar bound may hold for ‖OD̃rO
T −D‖.

Figure 7 presents a comparison between ‖ŨrD̃r−UOD̃r‖2,∞ and ‖ŨrD̃rO
T−UD‖2,∞.

The numerical evidence indicates that ‖ŨrD̃r − UOD̃r‖2,∞ is typically smaller than
‖ŨrD̃rO

T−UD‖2,∞, though both quantities increase with the rank r. Given that [15, Propo-
sition 3] establishes that with high probability that

‖ŨrD̃rO
T −UD‖2,∞ .

√
r+ log(N + n) + ‖U‖2,∞

‖E‖2

σr
,

this observation suggests potential for improving our Corollary 2.14 by replacing the term
r
√

log(N + n) with
√
r+ log(N + n). The theoretical verification of this observation re-

mains an open question for future research.
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FIG 6. CDF plots comparing the errors ‖OD̃rOT −D‖ (blue dotted curve) and ‖RD̃rOT −D‖ (red curve)
across 400 trials. The signal matrixA= UDV T has rank r, with its right and left singular vectors U and V gen-
erated independently from Haar-distributed orthonormal matrices. The noise matrix E has i.i.d. standard Gaus-
sian entries. We set the smallest singular value of A to σr = 60. The four figures correspond to r = 6,20,40,80
respectively.

G. Proofs of Lemma 6.2 and Lemma 6.3.
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FIG 7. CDF plots comparing the weighted subspace perturbations ‖ŨrD̃r − UOD̃r‖2,∞ (blue dotted curve)

and ‖ŨrD̃rOT − UD‖2,∞ (red curve) across 400 trials. The signal matrix A = UDV T has rank r, with its
right and left singular vectors U and V generated independently from Haar-distributed orthonormal matrices.
The noise matrix E has i.i.d. standard Gaussian entries. We set the smallest singular value of A to σr = 60. The
four figures correspond to r = 6,20,40,80 respectively.

G.1. Proof of Lemma 6.2. By the rotational invariance of E and definition of E , we
observe that for any orthogonal matrices

O1 =

(
O1 0
0 O2

)
, O2 =

(
Ô1 0

0 Ô2

)
where O1, Ô1 ∈RN×N and O2, Ô2 ∈Rn×n are orthogonal matrices,

O1EO2 ∼ E .

Consequently,

xT (G(z)−Φ(z))y∼ (O1x)T (G(z)−Φ(z)) (O2y).

Hence, it suffices to assume x = (x1,0 · · · ,0, xN+1,0, · · · ,0)T with x21 + x2N+1 = 1 and
y = (y1,0 · · · ,0, yN+1,0, · · · ,0)T with y21 + y2N+1 = 1. Furthermore,

xT (G(z)−Φ(z))y

= x1y1(G11(z)−Φ11(z)) + xN+1yN+1(GN+1,N+1(z)−ΦN+1,N+1(z))

+ x1yN+1G1,N+1(z) + xN+1y1GN+1,1(z).(78)

In order to prove Lemma 6.2, it suffices to show that for each fixed k ∈ J1,N + nK,

|Gkk(z)−Φkk(z)| ≤
2b2

(b− 1)2

√
(K + 1) log(N + n)

|z|2
(79)
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with probability at least 1− 4(N + n)−(K+1) and for fixed i 6= j ∈ J1,N + nK,

|Gij(z)| ≤ 2
√

2

(
b

b− 1

)2
√

(K + 1) log(N + n)

|z|2
(80)

with probability at least 1− 0.5(N + n)−(K+1).
If so, continuing from (78), we find that∣∣xT (G(z)−Φ(z))y

∣∣
≤

(
2

(
b

b− 1

)2

+ 2
√

2

(
b

b− 1

)2
)√

(K + 1) log(N + n)

|z|2

≤ 5

(
b

b− 1

)2
√

(K + 1) log(N + n)

|z|2

with probability at least 1 − 9(N + n)−(K+1). Here, we use the fact that |x1y1| +
|xN+1yN+1| ≤ 1 by the Cauchy-Schwarz inequality.

The proofs of Equation (79) and Equation (80) closely resemble the proof presented in
[9, Lemma 28], with only minor cosmetic modifications. For completeness, we outline the
main steps. As noted at the beginning of Section C, we work on the event that ‖E‖= ‖E‖ ≤
2(
√
N +

√
n).

We first prove (79). From Lemma 27 in [9], which follows from the Schur complement,
for any 1≤ k ≤N + n,

Gkk(z) =
1

z −Ekk −
∑(k)

s,t EskG
(k)
st (z)Etk

.

For 1≤ k ≤N , using the block structure of E and the expression for φ1(z) in [13, Eq. (26)]
and [13, Eq. (27)], we have∣∣∣∣Gkk(z)− 1

φ1(z)

∣∣∣∣=
∣∣∣∣∣∣ 1

z −
∑(k)

1≤i,j≤nEkiG
(k)
N+i,N+j(z)Ekj

− 1

φ1(z)

∣∣∣∣∣∣
≤
|
∑(k)

1≤i,j≤nEkiG
(k)
N+i,N+j(z)Ekj −

∑
t∈JN+1,N+nKGtt(z)|

|z −
∑(k)

1≤i,j≤nEkiG
(k)
N+i,N+j(z)Ekj ||z − trIdG(z)|

.(81)

To bound the right-hand side of (81), we need to establish an upper bound for its numerator
and lower bounds for the two terms in the denominator.

Let us first address the numerator using concentration inequalities. Define

X :=
(
G

(k)
N+i,N+j(z)

)
i,j 6=k

and let E(k) denote the k-th row of E. Since E(k) is independent of G(k), we can write∑(k)
1≤i,j≤nEkiG

(k)
N+i,N+j(z)Ekj :=E(k)XE

T
(k). Conditioning on X or G(k), we have

E(k)XE
T
(k) −E(E(k)XE

T
(k)) =

(k)∑
1≤i,j≤n

EkiG
(k)
N+i,N+j(z)Ekj −

∑
t∈JN+1,N+nK

G
(k)
tt (z).

This quadratic form can be bounded using either the Hanson-Wright inequality [11] or by ex-
ploiting the rotation invariance of Gaussian vectors to reduce it to a sum of independent ran-
dom variables and applying Bernstein’s inequality (as in [9, Lemma 28]). These approaches
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yield, with probability at least 1− 4(N + n)−(K+1) that
(82)∣∣∣∣∣∣

(k)∑
1≤i,j≤n

EkiG
(k)
N+i,N+j(z)Ekj −

∑
t∈JN+1,N+nK

G
(k)
tt (z)

∣∣∣∣∣∣≤ 2
√

2
√

(K + 1) log(N + n).

This bound follows from combining the estimates

‖X‖ ≤
∥∥∥∥(G(k)

N+i,N+j(z)
)
1≤i,j≤n

∥∥∥∥≤ ‖G(k)(z)‖ ≤ b

b− 1

1

|z|
and

‖X‖2F ≤
∥∥∥∥(G(k)

N+i,N+j(z)
)
1≤i,j≤n

∥∥∥∥2
F

≤ n
∥∥∥∥(G(k)

N+i,N+j(z)
)
1≤i,j≤n

∥∥∥∥2 ≤( b

b− 1

)2 n

|z|2

due to Lemma 6.1.
To complete the upper bound for the term in the numerator of the right-hand side of (81),

it remains to show that
∑

t∈JN+1,N+nKG
(k)
tt (z) and

∑
t∈JN+1,N+nKGtt(z) are close. Their

difference can be expressed as∣∣∣∣∣∣
∑

t∈JN+1,N+nK

G
(k)
tt (z)−

∑
t∈JN+1,N+nK

Gtt(z)

∣∣∣∣∣∣=
∣∣∣trId(G(k)(z)−G(z))

∣∣∣ .
Using the resolvent identity B−1 −C−1 =B−1(C −B)C−1, this becomes∣∣∣trId(G(k)(z)−G(z))

∣∣∣= ∣∣∣trIdG(z)(E − E(k))G(k)(z)
∣∣∣ .

Since E − E(k) has at most rank 2, we can bound this term:∣∣∣trIdG(z)(E − E(k))G(k)(z)
∣∣∣≤ 2‖G(z)(E − E(k))G(k)(z)‖

≤ 2‖G(z)‖(‖E‖+ ‖E(k)‖)‖G(k)(z)‖

≤ 4

(
b

b− 1

)2 ‖E‖
|z|2
≤ 4b

(b− 1)2
1

|z|
.

The last inequality follows from |z| ≥ 2b(
√
N +

√
n) and ‖E‖ ≤ 2(

√
N +

√
n). Therefore,∣∣∣∣∣∣

∑
t∈JN+1,N+nK

G
(k)
tt (z)−

∑
t∈JN+1,N+nK

Gtt(z)

∣∣∣∣∣∣≤ 4b

(b− 1)2
1

|z|
≤ 2

(b− 1)2
1√

N +
√
n
.

Next, we establish lower bounds for the denominator terms in (81), assuming (82) holds.
From [13, Eq. (32)], we have∣∣∣∣∣∣

∑
t∈JN+1,N+nK

Gtt(z)

∣∣∣∣∣∣= | trIdG(z)| ≤ |z|
4b(b− 1)

.

Note that 2
√

2
√

(K + 1) log(N + n)≤ 1
2(
√
N +

√
n)≤ |z|4b since (

√
N +

√
n)2 ≥ 32(K +

1) log(N + n) by assumption and |z| ≥ 2b(
√
N +

√
n). Combining this with (82) yields∣∣∣∣∣∣

(k)∑
1≤i,j≤n

EkiG
(k)
N+i,N+j(z)Ekj

∣∣∣∣∣∣≤ b− 2

4b(b− 1)
|z|.



38

Therefore, by the triangle inequality,

|z −
(k)∑

1≤i,j≤n
EkiG

(k)
N+i,N+j(z)Ekj ||z − trIdG(z)| ≥ 2(b− 1)2

b2
|z|2.

The case when N + 1≤ k ≤N + n can be computed similarly and we omit the details. The
combination of these bounds for the numerator and denominator terms completes the proof
of (79).

The proof of the off-diagonal bound (80) is more straightforward. Using Lemma 27 from
[9], which follows from the Schur complement, we have

Gij(z) =−Gii(z)
(i)∑
k

EikG
(i)
kj (z).

By Lemma 6.1, we first have

|Gij(z)| ≤
b

b− 1

1

|z|

∣∣∣∣∣∣
(i)∑
k

EikG
(i)
kj (z)

∣∣∣∣∣∣ .
The i-th row of E is independent of G(i), so conditioning on G(i), the sum

∑(i)
k EikG

(i)kj(z)

follows a Gaussian distribution with mean 0. Its variance is bounded by ((G(i))∗G(i))jj ≤
‖G(i)‖2 ≤ (b/(b− 1)|z|)2, from which the desired bound follows.

G.2. Proof of Lemma 6.3. In this section, we prove Lemma 6.3 using Lemma 6.2 and a
standard ε-net argument.

For convenience, denote ∆(z) :=G(z)−Φ(z). We first show that for any fixed z ∈C with
|z| ≥ 2b(

√
N +

√
n),∥∥UT∆(z)U

∥∥≤ 10

(
b

b− 1

)2
√

(K + 1) log(N + n) + 2(log 9)r

|z|2

with probability at least 1− 9(N + n)−(K+1).
LetN be the 1/4-net of the unit sphere S2r−1. A simple volume argument (see for instance

[12, Corollary 4.2.13]) shows N can be chosen such that |N | ≤ 92r . Furthermore, since for
any y ∈ S2r−1, there exists a x ∈N such that ‖y− x‖ ≤ 1/4, we have∣∣yTUT∆(z)Uy

∣∣≤ ∣∣xTUT∆(z)Ux
∣∣+ ∣∣(y− x)TUT∆(z)Ux

∣∣+ ∣∣yTUT∆(z)U(y− x)
∣∣

≤
∣∣xTUT∆(z)Ux

∣∣+ 1

2
‖UT∆(z)U‖.

Therefore, ‖UT∆(z)U‖ ≤ 2 maxx∈N
∣∣xTUT∆(z)Ux

∣∣ and for any K1 > 0 and (
√
N +√

n)2 ≥ 32(K1 + 1) log(N + n), by the union bound,

P

(
‖UT∆(z)U‖ ≥ 10

(
b

b− 1

)2
√

(K1 + 1) log(N + n)

|z|2

)

≤ P

(
max
x∈N

∣∣xTUT∆(z)Ux
∣∣≥ 5

(
b

b− 1

)2
√

(K1 + 1) log(N + n)

|z|2

)
≤ 92r+1(N + n)−(K1+1),
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where in the last inequality, we applied Lemma 6.2. Now choose K1 =K + 2 log 9
log(N+n)r and

assume

(
√
N +

√
n)2 ≥ 32(K1 + 1) log(N + n) = 32(K + 1) log(N + n) + 64(log 9)r.

The conclusion becomes that

‖UT∆(z)U‖ ≤ 10

(
b

b− 1

)2
√

(K + 1) log(N + n) + 2(log 9)r

|z|2

with probability at least 1− 10(N + n)−(K+1).
In particular, for any z ∈D = {z ∈C : 2b(

√
N +

√
n)≤ |z| ≤ 2n3},∥∥UT∆(z)U

∥∥≤ 10

(
b

b− 1

)2
√

(K + 7) log(N + n) + 2(log 9)r

|z|2

with probability at least 1− 9(N + n)−(K+7), as long as

(
√
N +

√
n)2 ≥ 32(K + 7) log(N + n) + 64(log 9)r.(83)

Let N be a 1-net of D. A simple volume argument (see for instance [10, Lemma 3.3])
shows N can be chosen so that |N | ≤ (1 + 8n3)2 < n7. By the union bound,

(84) max
z∈N
|z|2

∥∥UT∆(z)U
∥∥≤ 10

(
b

b− 1

)2√
(K + 7) log(N + n) + 2(log 9)r

with probability at least 1− 9(N + n)−K . We now wish to extend this bound to all z ∈D.
Define the functions

f(z) := z2UTG(z)U , g(z) := z2UTΦ(z)U .

In order to complete the proof, it suffices to show that f and g are 3b2

(b−1)2 -Lipschitz in D. In

other words, we want to show that ‖f(z) − f(w)‖ ≤ 3b2

(b−1)2 |z − w| and ‖g(z) − g(w)‖ ≤
3b2

(b−1)2 |z −w| for all z,w ∈ D. Indeed, in view of (84), if z ∈ D, then there exists w ∈N so
that |z −w| ≤ 1, and hence

|z|2
∥∥UTG(z)U −UTΦ(z)U

∥∥
≤ ‖f(z)− f(w)‖+ ‖f(w)− g(w)‖+ ‖g(w)− g(z)‖

≤ 6b2

(b− 1)2
+ |w|2

∥∥UTG(w)U −UTΦ(w)U
∥∥

≤ 6b2

(b− 1)2
+ 10

(
b

b− 1

)2√
(K + 7) log(N + n) + 2(log 9)r

< 11

(
b

b− 1

)2√
(K + 7) log(N + n) + 2(log 9)r = η,

where we used the Lipschitz continuity of f and g in the second inequality. In the last inequal-
ity, we use (83) to obtain a crude bound N +n≥ 32 ·7 log(N +n) and hence N +n≥ 1600.
This implies

√
(K + 7) log(N + n) + 2(log 9)r ≥

√
7 log(1600) + 2(log 9)≈ 7.5.

It remains to show that f and g are 3b2

(b−1)2 -Lipschitz in D. Recall that we work on the

event where ‖E‖ ≤ 2(
√
N +

√
n) through the proofs. Let z,w ∈D, and assume without loss
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of generality that |z| ≥ |w| ≥ 2b(
√
N +

√
n). Then

‖f(z)− f(w)‖ ≤ ‖z2UTG(z)U − zwUTG(z)U‖+ ‖zwUTG(z)U −w2UTG(z)U‖

+ ‖w2UTG(z)U −w2UTG(w)U‖

≤ |z|‖G(z)‖|z −w|+ |w||z −w|‖G(z)‖+ |w|2|z −w|‖G(z)‖‖G(w)‖

≤ 2b

b− 1
|z −w|+ b2

(b− 1)2
|z −w|= b(3b− 2)

(b− 1)2
|z −w|

≤ 3b2

(b− 1)2
|z −w|,

where we used the resolvent identity B−1 −C−1 =B−1(C −B)C−1, Lemma 6.1, and the
fact that |w||z| ≤ 1. This shows that f is 3b2

(b−1)2 -Lipschitz in D.
The proof for g is similar. First, by the triangle inequality, we have

‖g(z)− g(w)‖

≤ ‖z2UTΦ(z)U − zwUTΦ(z)U‖+ ‖zwUTΦ(z)U −w2UTΦ(z)U‖

+ ‖w2UTΦ(z)U −w2UTΦ(w)U‖

≤ |z||z −w|‖UTΦ(z)U‖+ |w||z −w|‖UTΦ(z)U‖+ |w|2‖UT(Φ(z)−Φ(w))U‖.(85)

Using the explicit expression in [13, Eq. (29)], we find that

‖UT(Φ(z)−Φ(w))U‖= max

{
|φ1(z)− φ1(w)|
|φ1(z)φ1(w)|

,
|φ2(z)− φ2(w)|
|φ2(z)φ2(w)|

}
.

By [13, Eq. (27)] and the resolvent identity B−1 −C−1 =B−1(C −B)C−1,

|φ1(z)− φ1(w)|= |z −w− trId(G(z)−G(w))|

= |z −w− (z −w) trIdG(z)G(w)|
≤ |z −w| (1 + (N + n)‖G(z)‖‖G(w)‖)

≤ |z −w|
(

1 +
b2

(b− 1)2
(N + n)

|z||w|

)
≤
(

1 +
1

4(b− 1)2

)
|z −w|,

where we used Lemma 6.1 and the facts that N+n
|w| ≤

|w|
4b2 and |w||z| ≤ 1. The same upper bound

also holds for |φ2(z)− φ2(w)|. Combining these estimates with [13, Eq. (31)], we have

‖UT(Φ(z)−Φ(w))U‖ ≤ 1 + 1/4(b− 1)2

(1− 1/4b(b− 1))2
|z −w|
|z||w|

.

Notice that ‖UTΦ(z)U‖ ≤ 1
1−1/4b(b−1)

1
|z| for any |z| ≥ 2b(

√
N +
√
n), which can be verified

using [13, Eq. (30)] and the bounds in [13, Eq. (31)]. Inserting these bounds into (85) yields
that

‖g(z)− g(w)‖ ≤ 2

1− 1/4b(b− 1)
|z −w|+ 1 + 1/4(b− 1)2

(1− 1/4b(b− 1))2
|z −w|

≤ 4b(12b3 − 24b2 + 11b+ 2)

(4b2 − 4b− 1)2
|z −w|< 3b2

(b− 1)2
|z −w|,

where the last inequality is check via Mathematica. Hence, g is 3b2

(b−1)2 -Lipschitz in D.
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H. Proof of Lemma C.2. In this section, we estimate ‖UT
J ũi‖ for each i ∈ I = Jk, sK∪

Jr+ k, r+ sK. Recall the decomposition of ũi in (16):

ũi = Π(λ̃i)Aũi + Ξ(λ̃i)Aũi,(86)

where Π(z) is a function to be further specified during the proof, and Ξ(z) =G(z)−Π(z).
We split the estimation of ‖UT

J ũi‖ for i ∈ I into two cases: when |λi| is large and when
|λi| is relatively small.

We start with the simpler case when |λi|> n2/2. We choose

Π(λ̃i) :=
1

λ̃i
IN+n +

1

λ̃2i
E .

We work on the event

max
l∈J1,r0K:σl>

1

2
n2
|σ̃l − σl| ≤ ηr.

By Lemma 6.6, this event holds with probability at least 1 − (N + n)−1.5r
2(K+4). Hence,

|λ̃i| ≥ |λi| − ηr ≥ 2b(
√
N +

√
n). We apply Lemma 6.5 to get

(87)
∥∥∥Ξ(λ̃i)

∥∥∥=
∥∥∥G(λ̃i)−Π(λ̃i)

∥∥∥≤ b

b− 1

‖E‖2

|λ̃i|3
.

Multiplying UT
J on both sides of (86), we obtain the following equation:

UT
J ũi = UT

J Π(λ̃i)Aũi + UT
J Ξ(λ̃i)Aũi.

Plugging in (17) and using the facts UT
J UI = 0 and UT

J UJ = I , we further get

UT
J ũi =

1

λ̃i
DJUT

J ũi +
1

λ̃2i
UT
J EUDUTũi + UT

J Ξ(λ̃i)UDUTũi,

which, by rearranging the terms, is reduced to

(λ̃iI −DJ)UT
J ũi =

1

λ̃i
UT
J EUDUTũi + λ̃iUT

J Ξ(λ̃i)UDUTũi.

Hence,

min
j∈J
|λ̃i − λj | · ‖UT

J ũi‖ ≤
1

|λ̃i|
‖UTEU‖ · ‖DUTũi‖+ |λ̃i|‖Ξ(λ̃i)‖ · ‖DUTũi‖.

Note that ‖DUTũi‖ ≤ ‖E‖+ |λ̃i| ≤ b
b−1 |λ̃i| as in (34). Inserting (87) into the above in-

equality, we arrive at

min
j∈J
|λ̃i − λj | · ‖UT

J ũi‖ ≤
b

b− 1
‖UTEU‖+

b2

(b− 1)2
‖E‖2

|λ̃i|
.(88)

For the remaining arguments, we work on the event

F :=
{
‖UTEU‖ ≤ 2

√
r+

√
2(K + 7) log(N + n)

}
.

The following lemma is proved in [8, Lemma 18].

LEMMA H.1. Let K be an arbitrary positive constant. With probability at least 1 −
2(N + n)−K , we have

‖UTEU‖ ≤ 2
√
r+

√
2K log(N + n).
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Therefore, the event F holds with probability at least 1− 2(N + n)−(K+7). We continue
the estimation of ‖UT

J ũi‖ from (88). Note that

‖UTEU‖ ≤ 2
√
r+

√
2(K + 7) log(N + n)< η.

Also, ‖E‖2/|λ̃i| ≤ 4(2
√
n)2/n2 < η where we used the crude bound |λ̃i| ≥ 1

4n
2 by Weyl’s

inequality. It follows that

(89) min
j∈J
|λ̃i − λj | · ‖UT

J ũi‖ ≤
b(2b− 1)

(b− 1)2
η.

To bound the left-hand side of (89), we first consider i ∈ Jk, sK. Then

min
j∈J
|λ̃i − λj |= min

j∈J1,k−1K∪Js+1,rK
|σ̃i − σj |= min{σk−1 − σ̃i, σ̃i − σs+1}

by |σ̃i−σi| ≤ ηr and the supposition min{δk−1, δs} ≥ 75χ(b)ηr. Next, applying the inequal-
ity min{δk−1, δs} ≥ 75χ(b)ηr again, we get

min
j∈J
|λ̃i − λj | ≥

(
1− 1

75χ(b)

)
min{δk−1, δs}.

It follows from (89) that

‖UT
J ũi‖ ≤

η

min{δk−1, δs}

(
1− 1

75χ(b)

)−1 b(2b− 1)

(b− 1)2

=
75(2b− 1)3b

(b− 1)2(296b2 − 296b+ 75)

η

min{δk−1, δs}

< 3
(b+ 1)2

(b− 1)2
η

min{δk−1, δs}
(90)

for every i ∈ Jk, sK satisfying λi = σi ≥ n2/2. The last inequality was checked by Mathemat-
ica. Finally, for i ∈ Jr + k, r + sK such that |λi| ≥ n2/2, analogous arguments yield that the
same bound

‖UT
J ũi‖ ≤ 3

(b+ 1)2

(b− 1)2
η

min{δk−1, δs}
.(91)

The estimation of ‖UT
J ũi‖ when |λi| is relatively small is more involved. From the pre-

vious discussion, it suffices to assume there is a certain l0 ∈ J1, r0K for which σl0 ≤ n2/2.
We claim that there exists an index i0 ∈ J1, r0K such that σj ≤ n3 for j ≥ i0 and σj > n3 for
j < i0, and

δi0−1 = σi0−1 − σi0 ≥ 75χ(b)ηr.

To determine i0, we propose a simple iterative algorithm: start with σ1. If σ1 ≤ n3, set i0 = 1
and terminate the algorithm, since σ0 =∞ and δ0 =∞ by definition. Assume σ1 > n3 and
evaluate σ2. If σ2 ≤ n3 − 75χ(b)ηr, set i0 = 2 and exit. Assume σ2 > n3 − 75χ(b)ηr and
evaluate σ3. We continue this process and terminate the algorithm with i0 = k unless

σ1 > n3, σ2 > n3 − 75χ(b)ηr, · · · , σk > n3 − 75χ(b)ηr.(92)

Note that the condition (92) cannot hold for k = l0 because σl0 ≤ n2/2 < n3 − 75χ(b)ηr,
based on the assumption that (

√
N+
√
n)2 ≥ 32(K+7) log(N+n)+64(log 9)r. Therefore,

i0 must satisfy i0 ≤ l0 − 1.
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We shall fix such an index i0 throughout the rest of the proof. We now turn our attention
to estimating ‖UT

J ũi‖ for i ∈ Jk0, sK∪ Jr+ k0, r+ sK, where we define

k0 := max{k, i0}

for the sake of notational simplicity. Note that min{δk0−1, δs} ≥ 75χ(b)ηr. Furthermore, in
this scenario, |λi| ≤ n3. We take

Π(ũi) = Φ(ũi).

Continuing from (16), we have

ũi = Φ(λ̃i)Aũi + Ξ(λ̃i)Aũi
and multiply on the left by UT

J to get

(93) UT
J ũi = UT

J Φ(λ̃i)Aũi + UT
J Ξ(λ̃i)Aũi.

Plugging in (17), we further have

UT
J ũi = UT

J Φ(λ̃i)UJDJUT
J ũi + UT

J Ξ(λ̃i)UDUTũi,

where we used UT
J Φ(λ̃i)UI = 0. Hence,

(94)
(
I2(r−s+k−1) −UT

J Φ(λ̃i)UJDJ
)
UT
J ũi = UT

J Ξ(λ̃i)UDUTũi.

We are now in position to bound ‖UT
J ũi‖. This can be achieved by obtaining an upper

bound for the right-hand side of (94) and estimating the smallest singular value of the matrix

(95) I2(r−s+k−1) −UT
J Φ(λ̃i)UJDJ

on the left-hand side of (94). We establish these estimates in the following two steps. Recall
that

ξ(b) = 1 +
1

2(b− 1)2
and χ(b) = 1 +

1

4b(b− 1)
.

For each k0 ≤ i≤ s, by Theorem 6.4, there exists k0 ≤ li ≤ s such that σ̃i ∈ Sσli
specified in

[13, Eq. (35)], and

|ϕ(σ̃i)− σ2li | ≤ 20ξ(b)χ(b)ηr (σ̃i + χ(b)σli)(96)

with probability at least 1 − 10(N + n)−K . Denote this event as E1. Furthermore, on the
event E1, by Lemma 6.3, for every k0 ≤ i≤ s,∥∥UTΞ(σ̃i)U

∥∥≤ η

σ̃2i

holds with probability at least 1− 9(N + n)−K . Let us denote this event as E2.
In the remaining proof, we will work on the event E1 ∩E2 which holds with probability at

least 1− 19(N + n)−K .

Step 1. Upper bound for the right-hand side of (94). We first consider the case when i ∈
Jk0, sK and λ̃i = σ̃i. Note that UT

J Ξ(σ̃i)U is a sub-matrix of UTΞ(σ̃i)U . Thus, using (36) and
the fact that the spectral norm of any sub-matrix is bounded by the spectral norm of the full
matrix, we deduce that

‖UT
J Ξ(σ̃i)U · DUTũi‖ ≤

η

σ̃2i
‖DUTũi‖.
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Recall the bound in (34):

‖DUTũi‖ ≤
b

b− 1
σ̃i(97)

Hence, ∥∥UT
J Ξ(σ̃i)UDUTũi

∥∥≤ b

b− 1

η

σ̃i
.(98)

For the case when i ∈ Jr+ k0, r+ sK, λ̃i =−σ̃i−r . Observe that

G(−σ̃i−r) = (−σ̃i−r −E)−1 =−(σ̃i−r + E)−1 ∼−(σ̃i−r −E)−1 =−G(σ̃i−r)

because the distribution of E is symmetric. Hence

Φ(−σ̃i−r)∼−Φ(σ̃i−r)

by the definition [13, Eq. (25)]. Repeating the arguments from the previous case, we see that∥∥∥UT
J Ξ(λ̃i)UDUTũi

∥∥∥≤ b

b− 1

η

σ̃i−r
.(99)

Step 2. Lower bound for the smallest singular value of the matrix (95). In fact, the singular
values of the matrix (95) can be calculated explicitly via elementary linear algebra. The fol-
lowing proposition presents a subtle modification of the one found in [8, Proposition 10]. For
completeness, the proof is provided in Section J.2.

PROPOSITION H.2. For 1 ≤ r0 < r and 1 ≤ k ≤ s ≤ r0, denote the index sets I :=
Jk, sK∪ Jr+ k, r+ sK and J := J1,2rK \ I . For any x ∈R satisfying |x|> ‖E‖, the singular
values of I2(r−s+k−1) −UT

J Φ(x)UJDJ are given by∣∣∣∣√1 + β(x)2σ2t ± |α(x)|σt
∣∣∣∣

for t ∈ J1, k− 1K∪ Js+ 1, rK.

In order to bound the singular values, we first estimate φ1(σ̃i)φ2(σ̃i), φ1(σ̃i) and φ2(σ̃i)
for i ∈ Jk0, sK. Since σ̃i ∈ Sσli

for some li ∈ Jk0, sK where Sσ is defined in [13, Eq. (35)], we
have

σ̃i ≥ σli − 20χ(b)ηr ≥
(

1− χ(b)

4b

)
σli(100)

and

σ̃i ≤ χ(b)σli + 20χ(b)ηr ≤ χ(b)

(
1 +

1

4b

)
σli(101)

by the supposition σli ≥ 2b(
√
N +

√
n) + 80bηr.

Observe from [13, Eq. (31)] that

(102)
(

1− 1

4b(b− 1)

)
σ̃i ≤ φs(σ̃i)≤ χ(b)σ̃i for s= 1,2.

Using these estimates, we crudely bound

0<α(σ̃i) =
1

2

(
1

φ1(σ̃i)
+

1

φ2(σ̃i)

)
≤ τ(b)

σ̃i
with τ(b) :=

(
1− 1

4b(b− 1)

)−1
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and by (28),

β(σ̃i) =
1

2

(
1

φ1(σ̃i)
− 1

φ2(σ̃i)

)
=
φ2(σ̃i)− φ1(σ̃i)
2φ1(σ̃i)φ2(σ̃i)

=
n−N
σ̃i

1

2φ1(σ̃i)φ2(σ̃i)
≤ τ(b)2

8b2σ̃i

by noting that σ̃2i ≥ (2b(
√
N +

√
n))2 > 4b2(N + n).

We are ready to bound the singular values of I2(r−s+k−1)−UT
J Φ(σ̃i)UJDJ . We start with

the case when i ∈ Jk0, sK and λ̃i = σ̃i. In view of Proposition H.2, the goal is to bound

min
t∈J1,k−1K∪Js+1,rK

∣∣∣∣√1 + β(σ̃i)2σ2t ± |α(σ̃i)|σt
∣∣∣∣

= min
t∈J1,k−1K∪Js+1,rK

∣∣∣∣√1 + β(σ̃i)2σ2t − α(σ̃i)σt

∣∣∣∣
= min
t∈J1,k−1K∪Js+1,rK

∣∣∣∣∣ 1− (α(σ̃i)
2 − β(σ̃i)

2)σ2t√
1 + β(σ̃i)2σ2t + α(σ̃i)σt

∣∣∣∣∣
= min
t∈J1,k−1K∪Js+1,rK

∣∣∣1− σ2
t

φ1(σ̃i)φ2(σ̃i)

∣∣∣√
1 + β(σ̃i)2σ2t + α(σ̃i)σt

.

The upper bounds of α(σ̃i) and β(σ̃i) obtained above yield that√
1 + β(σ̃i)2σ2t + α(σ̃i)σt ≤

√
1 +

τ(b)4

64b4
σ2t
σ̃2i

+ τ(b)
σt
σ̃i
≤ 1 + τ(b)

(
1 +

τ(b)

8b2

)
σt
σ̃i

for any t ∈ J1, k− 1K∪ Js+ 1, rK. Hence,

min
t∈J1,k−1K∪Js+1,rK

∣∣∣∣√1 + β(σ̃i)2σ2t ± α(σ̃i)σt

∣∣∣∣
≥ min
t∈J1,k−1K∪Js+1,rK

1

1 + τ(b)
(

1 + τ(b)
8b2

)
σt

σ̃i

∣∣∣∣φ1(σ̃i)φ2(σ̃i)− σ2tφ1(σ̃i)φ2(σ̃i)

∣∣∣∣
≥ min
t∈J1,k−1K∪Js+1,rK

1

1 + τ(b)
(

1 + τ(b)
8b2

)
σt

σ̃i

|φ1(σ̃i)φ2(σ̃i)− σ2t |
χ(b)2σ̃2i

.

To continue the estimates, we consider the cases t ∈ J1, k− 1K and t ∈ Js+ 1, rK separately.
First, for any t ∈ J1, k− 1K, σt ≥ σi and σt ≥ σli since i, li ∈ Jk0, sK. By (96),

φ1(σ̃i)φ2(σ̃i)≤ σ2li + 20ξ(b)χ(b)ηr(σ̃i + χ(b)σli).

Thus, we obtain

σ2t − φ1(σ̃i)φ2(σ̃i)≥ σ2t − σ2li − 20ξ(b)χ(b)ηr(σ̃i + χ(b)σli)

≥ (σt − σli)(σt + σli)− 20ξ(b)χ(b)2ηr

((
1 +

1

4b

)
σt + σli

)
.(103)

The last inequality is due to

σ̃i ≤ χ(b)

(
1 +

1

4b

)
σli ≤ χ(b)

(
1 +

1

4b

)
σt
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from (101) and σt ≥ σli . Since σt − σli ≥ δk−1 ≥ 75χ(b)ηr, we further get

σ2t − φ1(σ̃i)φ2(σ̃i)≥
(

1− 4

15
ξ(b)χ(b)

(
1 +

1

4b

))
δk−1(σt + σli)> 0

since 1− 4
15ξ(b)χ(b)

(
1 + 1

4b

)
≥ 1− 4

15ξ(2)χ(2)
(
1 + 1

8

)
≈ 0.49.

Hence, we further have

min
t∈J1,k−1K

1

1 + τ(b)
(

1 + τ(b)
8b2

)
σt

σ̃i

|φ1(σ̃i)φ2(σ̃i)− σ2t |
χ(b)2σ̃2i

=
1

χ(b)2σ̃i
min

t∈J1,k−1K

σ2t − φ1(σ̃i)φ2(σ̃i)

σ̃i + τ(b)
(

1 + τ(b)
8b2

)
σt

≥
(

1− 4

15
ξ(b)χ(b)

(
1 +

1

4b

)) δk−1
χ(b)2σ̃i

min
t∈J1,k−1K

σt + σli

σ̃i + τ(b)
(

1 + τ(b)
8b2

)
σt

≥
(

1− 4

15
ξ(b)χ(b)

(
1 +

1

4b

)) δk−1
χ(b)2σ̃i

min
t∈J1,k−1K

σli + σt

χ(b)
(
1 + 1

4b

)
σli + τ(b)

(
1 + τ(b)

8b2

)
σt
.

Note that χ(b)
(
1 + 1

4b

)
≥ τ(b)

(
1 + τ(b)

8b2

)
for b ≥ 2 (checked via Mathematica). We con-

clude that

min
t∈J1,k−1K

∣∣∣∣√1 + β(σ̃i)2σ2t ± α(σ̃i)σt

∣∣∣∣≥ 1− 4
15ξ(b)χ(b)

(
1 + 1

4b

)
χ(b)3

(
1 + 1

4b

) δk−1
σ̃i

.(104)

Next, for any t ∈ Js + 1, rK, σt/σli ≤ 1 and by (100), σt/σ̃i ≤
(

1− χ(b)
4b

)−1
. Conse-

quently,

min
t∈Js+1,rK

1

1 + τ(b)
(

1 + τ(b)
8b2

)
σt

σ̃i

|φ1(σ̃i)φ2(σ̃i)− σ2t |
χ(b)2σ̃2i

≥ 1

1 + τ(b)
(

1 + τ(b)
8b2

)(
1− χ(b)

4b

)−1 1

χ(b)2
min

t∈Js+1,rK

|φ1(σ̃i)φ2(σ̃i)− σ2t |
σ̃2i

.(105)

By (96),

φ1(σ̃i)φ2(σ̃i)≥ σ2li − 20ξ(b)χ(b)ηr(σ̃i + χ(b)σli).

Using a similar argument as (103), one has

φ1(σ̃i)φ2(σ̃i)− σ2t ≥ σ2li − σ
2
t − 20ξ(b)χ(b)2ηr

((
1 +

1

4b

)
σt + σli

)
≥
(

1− 4

15
ξ(b)χ(b)

(
1 +

1

4b

))
δs(σt + σli)> 0

since σli − σt ≥ δs ≥ 75χ(b)ηr. Continuing from (105), we further get

min
t∈Js+1,rK

∣∣∣∣√1 + β(σ̃i)2σ2t ± α(σ̃i)σt

∣∣∣∣
≥

1− 4
15ξ(b)χ(b)

(
1 + 1

4b

)
1 + τ(b)

(
1 + τ(b)

8b2

)(
1− χ(b)

4b

)−1 1

χ(b)2
δs
σ̃i

min
t∈Js+1,rK

σt + σli
σ̃i
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≥
1− 4

15ξ(b)χ(b)
(
1 + 1

4b

)
1 + τ(b)

(
1 + τ(b)

8b2

)(
1− χ(b)

4b

)−1 1

χ(b)3
(
1 + 1

4b

) δs
σ̃i

:= ν(b)
δs
σ̃i
,

where the last inequality follows from (101).
Comparing (104) and (106), together with the observation

1− 4
15ξ(b)χ(b)

(
1 + 1

4b

)
χ(b)3

(
1 + 1

4b

) ≥ ν(b)

for b≥ 2 (checked via Mathematica), we conclude that

min
t∈J1,k−1K∪Js+1,rK

∣∣∣∣√1 + β(λ̃i)2σ2t ± |α(λ̃i)|σt
∣∣∣∣≥ ν(b)

min{δk−1, δs}
σ̃i

.(106)

For the case when i ∈ Jr + k0, r + sK and λ̃i =−σ̃i−r . Use the observation that α(λ̃i)∼
−α(σ̃i−r) and β(λ̃i)∼−β(σ̃i−r) from the definitions [13, Eq. (27)]. A simple modification
of the previous proof shows that

min
t∈J1,k−1K∪Js+1,rK

∣∣∣∣√1 + β(λ̃i)2σ2t ± |α(λ̃i)|σt
∣∣∣∣≥ ν(b)

min{δk−1, δs}
σ̃i−r

.(107)

Step 3. Combining the bounds above. With the estimates deduced in the previous two steps,
we are in a position to bound ‖UT

J ũi‖. For i ∈ Jk0, sK, plugging (98) and (106) and into (94),
we find that

‖UT
J ũi‖ ≤

b

(b− 1)ν(b)

η

min{δk−1, δs}
.

Finally, for simplicity, we employ the following bound

b

(b− 1)ν(b)
< 3

(b+ 1)2

(b− 1)2

for b≥ 2 (checked via Mathematica). We arrive at

‖UT
J ũi‖ ≤ 3

(b+ 1)2

(b− 1)2
η

min{δk−1, δs}
.

Likewise, for i ∈ Jr+ k0, r+ sK, using (99) and (107), we also get

‖UT
J ũi‖ ≤ 3

(b+ 1)2

(b− 1)2
η

min{δk−1, δs}
.

This completes the proof.

I. Proof of Theorem 6.4. This section is devoted to the proof of Theorem 6.4. For con-
venience, denote

M := 2b(
√
N +

√
n).

Note that the assumptions of Theorem 6.4 guarantees that for any z ∈ Sσj
(1 ≤ j ≤ r0),

|z| ≥Re(z)≥ σj − 20χ(b)ηr ≥ σj − 20χ(2)ηr = σj − 45
2 ηr >M .

We start with some reduction of the proof. First, note that if σj > n2/2 for 1 ≤ j ≤ r0,
then by Lemma 6.6, with probability at least 1− (N + n)−1.5r

2(K+4),

|σ̃j − σj | ≤ ηr.
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Since ϕ(z) = (z − trIdG(z))(z − trIuG(z)),

|ϕ(σ̃j)− σ2j |=
∣∣∣σ̃2j − σ2j − σ̃j trG(σ̃j) + (trIuG(σ̃j))(trIdG(σ̃j))

∣∣∣
≤ ηr(σ̃j + σj) + σ̃j |trG(σ̃j)|+ |trIuG(σ̃j)|

∣∣∣trIdG(σ̃j)
∣∣∣ .

Note that by Weyl’s inequality, σ̃j ≥ σj−‖E‖ ≥max{M +80bηr,n2/2}−2(
√
N +
√
n)≥

M by the suppositions on N,n. Hence, by [13, Eq. (32)],

max{| trG(σ̃j)|, | trIuG(σ̃j)|, | trIdG(σ̃j)|} ≤
b

b− 1

N + n

σ̃j
≤ 2

N + n

σ̃j
.

It follows that

|ϕ(σ̃j)− σ2j | ≤ ηr(σ̃j + σj) + 2(N + n) + 4
(N + n)2

σ̃2j
≤ 10ηr(σ̃j + σj)

by the supposition that σj > n2/2 and the Weyl’s inequality. In particular, the conclusion of
Theorem 6.4 holds.

Consequently, it is enough to examine the scenario where there is a certain l0 ∈ J1, r0K
for which σl0 ≤ n2/2. We claim that there exists an index i0 ∈ J1, r0K such that σj ≤ n3 for
j ≥ i0 and σj > n3 for j < i0, and

δi0−1 = σi0−1 − σi0 ≥ 75χ(b)ηr.

To determine i0, we propose a simple iterative algorithm: start with σ1. If σ1 ≤ n3, set i0 = 1
and terminate the algorithm, since σ0 =∞ and δ0 =∞ by definition. Assume σ1 > n3 and
evaluate σ2. If σ2 ≤ n3 − 75χ(b)ηr, set i0 = 2 and exit. Assume σ2 > n3 − 75χ(b)ηr and
evaluate σ3. We continue this process and terminate the algorithm with i0 = k unless

σ1 > n3, σ2 > n3 − 75χ(b)ηr, · · · , σk > n3 − 75χ(b)ηr.(108)

Note that the condition (108) cannot hold for k = l0 because σl0 ≤ n2/2 < n3 − 75χ(b)ηr,
based on the assumption that (

√
N+
√
n)2 ≥ 32(K+7) log(N+n)+64(log 9)r. Therefore,

i0 must satisfy i0 ≤ l0 − 1.
We shall fix such an index i0 throughout the rest of the proof. The goal is to demonstrate

that the following holds with a probability of at least 1− 10(N +N)−K : assume any i0 ≤
k ≤ s≤ r0 that fulfills min{δk−1, δs} ≥ 75χ(b)ηr. For any j ∈ Jk, sK, there exists j0 ∈ Jk, sK
such that σ̃j ∈ Sσj0

and [13, Eq. (36)] is satisfied.
Before moving forward with the proof, we review several results and introduce necessary

notations collected from [9]. The proofs of these results are identical to these in [9], utilizing
Lemma 6.1, and we will not repeat them here.

LEMMA I.1 (Eigenvalue location criterion, Lemma 21 from [9]). Assume A has rank 2r
with the spectral decomposition A= UDUT, where U is an (N + n)× 2r matrix satisfying
UTU = I2r and D is a 2r × 2r diagonal matrix with non-zero λ1, . . . , λ2r on the diagonal.
Then the eigenvalues of A+ E outside of [−‖E‖,‖E‖] are the zeros of the function

z 7→ det(D−1 −UTG(z)U).

Moreover, the algebraic multiplicity of each eigenvalue matches the corresponding multiplic-
ity of each zero.
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Define the functions

f(z) := det(D−1 −UTG(z)U), g(z) := det
(
D−1 −UTΦ(z)U

)
,

where Φ(z) is given in [13, Eq. (25)]. Observe that, by Lemma 6.1, 1/φ1(z), 1/φ2(z) and
thus Φ(z) are well-defined for any |z|>M . Therefore, f and g are both complex analytic in
the region {z ∈C : |z|>M}. Furthermore, a direct computation using [13, Eq. (29)] suggests
that the zeros of g(z) are the values z ∈C which satisfy the equations φ1(z)φ2(z) = σ2l . This
can be verified through the following calculation:

g(z) = det

[(
D−1 0

0 −D−1
)
−
(
αIr βIr
βIr αIr

)]
= det

[
(D−1 − αIr)(−D−1 − αIr)− β2Ir

]
=

r∏
l=1

(
(α− σ−1l )(α+ σ−1l )− β2

)
.

The zeros of g(z) can then be determined by substituting the expressions for α = α(z) and
β = β(z) from [13, Eq. (29)].

Recall from [13, Eq. (34)] and [13, Eq. (27)] that

ϕ(z) = φ1(z)φ2(z) = (z − trIdG(z))(z − trIuG(z)).

We use the function

(109) ξ(b) = 1 +
1

2(b− 1)2
.

The subsequent lemma establishes a set of properties exhibited by ϕ within the complex
plane as well as on the real axis.

LEMMA I.2 (Lemma 22 from [9]). The function ϕ satisfies the following properties.

(i) For z,w ∈C with |z|, |w|, |z +w| ≥M ,

(110)
(

1− 1

2(b− 1)2

)
|z2 −w2| ≤ |ϕ(z)−ϕ(w)| ≤ ξ(b)|z2 −w2|.

(ii) (Monotone) ϕ is real-valued and strictly increasing on [M,∞).
(iii) (Crude bounds) 0<ϕ(z)< z2 for any z ∈ [M,∞).

Fix an index j ∈ J1, r0K. Since ϕ(M) <M2 and limz→∞ϕ(z) =∞, it follows from the
previous lemma that there exists a unique positive real number zj >M such that ϕ(zj) = σ2j .
Similarly, if σl > M for σl 6= σj , then there exists a unique positive real number zl with
ϕ(zl) = σ2l so that zj > zl if l > j and zj < zl if l < j.

For the next result, we define the half space

Hj := {z ∈C : Re(z)≥ zj − 20χ(b)ηr} with χ(b) = 1 +
1

4b(b− 1)
.

PROPOSITION I.3 (Proposition 23 from [9]). Under the assumptions of Theorem 2.3, for
every z ∈Hj ,

|z| ≥ σj ≥M.

In particular,

σj ≤ zj ≤ χ(b)σj .(111)
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PROPOSITION I.4 (Proposition 24 from [9]). If σj > 1
2n

2, then |zj − σj | ≤ 3b
b−1

1
n .

We now complete the proof of Theorem 6.4. Let j be a fixed index in Ji0, r0K. We will
work in the set Hj ∩ Sσj

, where Sσj
is specified in [13, Eq. (35)]. It follows from Corollary

2.14 in [6] that

(112)
|f(z)− g(z)|
|g(z)|

≤ (1 + ε(z))2r − 1,

where

ε(z) :=
∥∥∥(D−1 −UTΦ(z)U

)−1∥∥∥∥∥UT(G(z)−Φ(z))U
∥∥ .

The next result facilitates the comparison of the numbers of zeros of f and g inside a
region and will be used repeatedly in the later arguments.

LEMMA I.5. For any region K ⊂ C with closed contour ∂K, if ε(z) ≤ 0.34
r for all z ∈

∂K, then the number of zeros of f inside K is the same as the number of zeros of g inside K.

PROOF. Continuing from (112), we find that

(113)
|f(z)− g(z)|
|g(z)|

≤
(

1 +
0.34

r

)2r

− 1≤ e0.68 − 1< 1

for each z ∈ ∂K. Therefore, by Rouché’s theorem, we conclude that the numbers of zeros of
f and g inside K are the same.

In the remaining of the proof, we work on the event

F :=

{
max
z∈D
|z|2

∥∥UT (G(z)−Φ(z))U
∥∥≤ η}∩{ max

l∈J1,r0K:σl>
1

2
n2
|σ̃l − σl| ≤ ηr

}
,(114)

where D = {z ∈C : 2b(
√
N +

√
n)≤ |z| ≤ 2n3}. By Lemma 6.3 and Lemma 6.6, the event

F holds with probability at least 1−9(N+n)−K−(N+n)−1.5r
2(K+4) > 1−10(N+n)−K .

We first bound ε(z) for z ∈D. By Proposition 11 from [9],∥∥∥(D−1 −UTΦ(z)U
)−1∥∥∥= max

1≤l≤r

σl
|σ2l − φ1φ2|

Q1/2,

where

Q := |φ1φ2|2 +
1

2
σ2l (|φ1|2 + |φ2|2) +

1

2
σl
[
4|φ1φ2|2|φ1 + φ̄2|2 + σ2l (|φ1|2 − |φ2|2)2

]1/2
.

Recall χ(b) = 1 + 1
4b(b−1) . Using [13, Eq. (31)] from Lemma 6.1, for z ∈D, we get |φi(z)| ≤

χ(b)|z| for i= 1,2, and

Q≤ χ(b)4|z|4 + χ(b)2σ2l |z|2 + χ(b)2σl|z|2
√
σ2l + 4χ(b)2|z|2

≤ χ(b)4|z|4 + χ(b)2σ2l |z|2 + χ(b)2σl|z|2(σl + 2χ(b)|z|)

≤ χ(b)4|z|4 + 2χ(b)2σ2l |z|2 + 2χ(b)3σl|z|3

≤ χ(b)2|z|2
(
χ(b)|z|+

√
2σl

)2
,
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and thus ∥∥∥(D−1 −UTΦ(z)U
)−1∥∥∥≤ χ(b)|z| max

1≤l≤r

σl(χ(b)|z|+
√

2σl)

|σ2l −ϕ(z)|
.

Hence, we obtain that on the event F ,

ε(z)≤ max
1≤l≤r

χ(b)
η

|z|
σl(χ(b)|z|+

√
2σl)

|σ2l −ϕ(z)|
(115)

for all z ∈D. Note that Sσj
⊂D for all j ∈ Ji0, r0K.

For each j ∈ Ji0, r0K, we take Cj to be the circle of radius 20χ(b)ηr centered at zj and
contained in Hj ∩ Sσj

. Note that Cj’s may intersect each other. For any i0 ≤ k ≤ s ≤ r0
satisfying min{δk−1, δs} ≥ 75χ(b)ηr. Let

Kk,s := ∪sl=kCl.

We now restrict ourselves to values of z contained on ∂Kk,s. The goal is to show ε(z) is
small for all z ∈ ∂Kk,s. Continuing from (115), it suffices to show

χ(b)
η

|z|
σl(χ(b)|z|+

√
2σl)

|σ2l −ϕ(z)|
(116)

is small for all 1≤ l≤ r.
Fix z ∈ ∂Kk,s. Assume z ∈ Cj0 for some j0 ∈ Jk, sK. Then

|z − zj0 |= 20χ(b)ηr.

Note that σj0 ≥ 80bηr. Using (111), we have

|z| ≤ zj0 + 20χ(b)ηr ≤ χ(b)

(
1 +

1

4b

)
σj0 ,

|z| ≥ zj0 − 20χ(b)ηr ≥
(

1− χ(b)

4b

)
σj0 .(117)

We split the discussion into two cases: |σl − σj0 | ≤ 120ηr and |σl − σj0 |> 120ηr.
Case 1. For any l ∈ J1, rK satisfying |σl − σj0 | ≤ 120ηr, observe that |z− zl| ≥ 20χ(b)ηr.

In view of (110), , we have

|σ2l −ϕ(z)|= |ϕ(zl)−ϕ(z)| ≥
(

1− 1

2(b− 1)2

)
|z2l − z2| ≥

1

2
|zl − z||zl + z|

≥ 10χ(b)ηr|zl + z| ≥
(

1− χ(b)

4b

)
σj0 + σl,

where, in the last inequality, we used

|zl + z|= |zl + zj0 + z − zj0 | ≥ zl + zj0 − 20χ(b)ηr

≥ σl + σj0 − 20χ(b)ηr ≥
(

1− χ(b)

4b

)
σj0 + σl

by (111) and the supposition ηr ≤ σj0/80b. Combining with (117), we estimate (116) as
follows:

χ(b)
η

|z|
σl(χ(b)|z|+

√
2σl)

|σ2l −ϕ(z)|
≤ 1

r

1

10(1− χ(b)
4b )

σl
σj0

χ(b)2(1 + 1
4b)σj0 +

√
2σl

(1− χ(b)
4b )σj0 + σl

.
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Note that σl ≤ σj0 + 120ηr ≤ (1 + 120/80b)σj0 ≤ (7/4)σj0 for b≥ 2. Also, χ(b)≤ χ(2) =
9/8 for b≥ 2. We further obtain that

χ(b)
η

|z|
σl(χ(b)|z|+

√
2σl)

|σ2l −ϕ(z)|
≤ 1

r

1

10(1− 9/64)

7

4

(9/8)3σj0 +
√

2σl
(1− 9/64)σj0 + σl

≤ 1

r

7

40(1− 9/64)

(9/8)3

1− 9/64
<

0.34

r
.

Case 2. For any l ∈ J1, rK satisfying |σl − σj0 |> 120ηr, we start with

|σ2l −ϕ(z)| ≥ |σ2l − σ2j0 | − |σ
2
j0 −ϕ(z)|= |σ2l − σ2j0 | − |ϕ(zj0)−ϕ(z)|

≥ |σl − σj0 |(σl + σj0)− 20χ(b)ξ(b)ηr|zj0 + z|.

by (110) and |z − zj0 |= 20χ(b)ηr. Since

|zj0 + z| ≤ 2zj0 + |z − zj0 |= 2zj0 + 20χ(b)ηr

≤ 2χ(b)σj0 + 20χ(b)ηr ≤ 2χ(b) (1 + 1/8b)σj0 ≤
34

16
χ(b)σj0

and |σl − σj0 |> 120ηr, we further get

|σ2l −ϕ(z)| ≥ |σl − σj0 |(σl + σj0)− 20χ(b)2ξ(b)
34

16

1

120
|σl − σj0 |(σl + σj0)

=

(
1− 17

48
χ(b)2ξ(b)

)
|σl − σj0 |(σl + σj0).

Hence, using (117), we get

χ(b)
η

|z|
σl(χ(b)|z|+

√
2σl)

|σ2l −ϕ(z)|
≤ χ(b)η

(1− χ(b)
4b )(1− 17

48χ(b)2ξ(b))

σl
σj0

χ(b)2(1 + 1
4b)σj0 +

√
2σl

|σl − σj0 |(σl + σj0)
.

To continue the estimates, we simply use the fact that χ(b), ξ(b) are decreasing. Thus χ(b)≤
χ(2) = 9/8 and ξ(b) = 1 + 1/(2(b− 1)2)≤ 3/2 for b≥ 2. Hence,

χ(b)
η

|z|
σl(χ(b)|z|+

√
2σl)

|σ2l −ϕ(z)|
≤ (9/8)4

55
64(1− 17

48(98)2 32)

σl
σj0

η

|σj0 − σl|
< 6

σl
σj0

η

|σj0 − σl|
.

If σl ≤ 2σj0 , then

6
σl
σj0

η

|σj0 − σl|
≤ 12

η

120ηr
=

0.1

r
.

If σl ≥ 2σj0 , then σl − σj0 ≥ 0.5σl and

6
σl
σj0

η

|σj0 − σl|
≤ 12

η

σj0
≤ 12

η

160ηr
=

0.075

r
.

Thus, we conclude that

(118) ε(z)≤ 0.34

r

for all z ∈ Kk,s. By Lemma I.5, the number of zeros of f inside Kk,s is the same as the
number of zeros of g inside Kk,s.

Since min{δi0−1, δr0} ≥ 75χ(b)ηr by our supposition, we could take k = i0 and s = r0
and thus Ki0,r0 = ∪r0l=i0Cl. Since g has r0 − i0 + 1 zeros inside Ki0,r0 , it follows that A+ E
has exactly r0 − i0 + 1 eigenvalues inside Ki0,r0 . More generally, for any i0 ≤ k ≤ s ≤ r0
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satisfying min{δk−1, δs} ≥ 75χ(b)ηr, we conclude that the number of eigenvalues of A+ E
inside Kk,s is s− k+ 1, the same as the number of zeros of g inside Kk,s. It remains to show
that these eigenvalues are exactly σ̃k, · · · , σ̃s. If this is the case, then for any j ∈ Jk, sK, there
exists j0 ∈ Jk, sK such that σ̃j ∈ Cj0 and thus

|σ̃j − zj0 | ≤ 20χ(b)ηr.

In particular, σ̃j ∈ Sσj0
. By ϕ(zj0) = σ2j0 , (110) and (111),

|ϕ(σ̃j)− σ2j0 |= |ϕ(σ̃j)−ϕ(zj0)| ≤ 20ξ(b)χ(b)ηr (σ̃j + χ(b)σj0) .

This will complete the proof.
It remains to prove that for any i0 ≤ k ≤ s≤ r0 satisfying min{δk−1, δs} ≥ 75χ(b)ηr, the

eigenvalues of A + E inside ∪sl=kCl are exactly σ̃k, · · · , σ̃s. We will do so by proving the
following claims hold on the event F (see Figure 8 for an illustration):

FIG 8. Distinct circles Cj with centers zj on the real line for i0 ≤ j ≤ r0.

Claim 1. For any i0 ≤ k ≤ s ≤ r0 satisfying min{δk−1, δs} ≥ 75χ(b)ηr, ∪sl=kCl does not
intersect other circles.
Claim 2. A+ E has exactly i0 − 1 eigenvalues larger than zi0 + 20χ(b)ηr.
Claim 3. No eigenvalues of A+ E lie between disjoint circles.

For the moment, let us assume these claims are true. Note that σ̃i0 has to lie inside one
of the Cj’s (i0 ≤ j ≤ r0) because it is the largest eigenvalue of A+ E that is no larger than
zi0 + 20χ(b)ηr (due to Claim 2) and thus it satisfies σ̃i0 > zr0 − 20χ(b)ηr. Since the number
of zeros of g(z) located inside Ki0,r0 = ∪r0j=i0Cj , which is r0 − i0 + 1, is the same as that of
f(z) inside Ki0,r0 , we have σ̃i0 , . . . , σ̃r0 lie inside Ki0,r0 . The conclusion follows by Claim 1,
Claim 3 and the fact that the number of zeros of g(z) in each Kk,s is the same as that of f(z).

We start with the proof of the Claim 1. It suffices to show that if |σl − σj | ≥ 75χ(b)ηr,
then Cl and Cj do not intersect. By Lemma I.2,

|z2l − z2j | ≥
1

ξ(b)
|ϕ(zl)−ϕ(zj)|=

|σ2l − σ2j |
ξ(b)

≥ 75χ(b)ηr

ξ(b)
(σl + σj).

Since |z2l − z2j |= (zl + zj)|zl − zj | ≤ χ(b)(σl + σj)|zl − zj | by Proposition I.3, we have

(119) |zl − zj | ≥
75

ξ(b)
ηr,

and thus

dist(Cj ,Cl)≥ |zl − zj | − 40χ(b)ηr ≥ 75

ξ(b)
ηr− 40χ(b)ηr ≥

(
75

ξ(2)
− 40χ(2)

)
ηr > 0.

Next, we prove Claim 2. We split the proof into two cases: i0 = 1 and i0 > 1.
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Case 1: i0 = 1. We prove that no eigenvalues of A+ E are larger than z1 + 20χ(b)ηr. We
now take C0 to be any circle with radius 20χ(b)ηr centered at a point z0 > z1 + 20χ(b)ηr on
the real line inside the region H1 ∩ Ŝσ1

such that dist(z1,C0)≥ 20χ(b)ηr. Here

Ŝσ1
:= {w ∈C :| Im(w)| ≤ 20χ(b)ηr,

2b(
√
N +

√
n) + 138ηr ≤Re(w)≤ 3

2
σ1 + 20χ(b)ηr}(120)

is a slight modification of the set Sσ in [13, Eq. (35)]. Note that σ̃1 ∈ Ŝσ1
: the upper bound

σ̃1 ≤ 3
2σ1 follows from the Weyl’s inequality and the supposition ‖E‖ ≤ 1

bσ1 ≤
1
2σ1; the

lower bound is because it is the largest eigenvalue and σ̃1 ≥ zj − 20χ(b)ηr ≥ σj − 20χ(b)ηr
for any j ∈ Ji0, r0K due to fact that the number of eigenvalues of A + E inside ∪r0l=i0Cl is
r0 − i0 + 1. For z ∈ Ŝσ1

,

2b(
√
N +

√
n)≤ |z| ≤ 40χ(b)ηr+

3

2
σ2 ≤

40χ(b)

80b
σ1 +

3

2
σ1 ≤

57

32
σ1 < 2n2,

hence z ∈D and the conclusion of Lemma 6.3 holds. In particular, the bound (115) also holds
for z ∈ Ŝσ1

. We show

ε(z)<
1

3r

for all z ∈ C0. The proof is similar to the proof of (118) and we sketch it here. For any z ∈ C0,
from |z − z0|= 20χ(b)ηr and z0 − z1 > 40χ(b)ηr, we obtain |z| ≤ z0 + 20χ(b)ηr and

|z| ≥ z0 − 20χ(b)ηr ≥ z1 + 20χ(b)ηr > σ1 + 20χ(b)ηr > σ1.

Again, by Lemma I.2, we see for any 1≤ l≤ r,

|σ2l −ϕ(z)|= |ϕ(zl)−ϕ(z)| ≥ 1

2
|z2l − z2|

≥ 1

2
(zl + Re(z))(Re(z)− zl)

≥ 1

2
(σl + z0 − 20χ(b)ηr)(z0 − zl − 20χ(b)ηr)

≥ 10χ(b)ηr(σl + z0 − 20χ(b)ηr).(121)

Plugging these estimates back into (115), we see

ε(z)≤ max
1≤l≤r

χ(b)
ησl
σ1

χ(b)(z0 + 20χ(b)ηr) +
√

2σl
10χ(b)ηr(z0 + σl − 20χ(b)ηr)

<
1

5r
,

where we used the bound χ(b)(z0 + 20χ(b)ηr) +
√

2σl ≤ 2(z0 + σl − 20χ(b)ηr) in the last
inequality.

By Lemma I.5, f has the same number of zeros inside C0 as g. As g has no zeros inside
C02,A+E has no eigenvalues inside C0. Since the circle C0 was arbitrarily chosen inside this
region, we conclude that A+ E has no eigenvalues larger than z1 + 20χ(b)ηr.

Case 2: i0 > 1. On the event F , we have

(122) max
l∈J1,r0K;σl>n2/2

|σ̃l − σl| ≤ ηr.

2This follows from Lemma I.2 and the fact that Im(ϕ(z)) 6= 0 whenever Imz 6= 0 for all |z|>M .
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Note that σi0−1 > n3 > n2. Combining (122), Proposition I.4 and

zi0−1 − zi0 ≥
75

ξ(b)
ηr ≥ 75

ξ(2)
ηr = 50ηr,

which follows from the supposition δi0−1 ≥ 75χ(b)ηr and the same argument as (119), we
get

σ̃i0−1 ≥ σi0−1 − ηr ≥ zi0−1 −
3b

b− 1

1

n
− ηr ≥ zi0 + 50ηr− 6

n
> zi0 + 20χ(b)ηr.

Hence, A+ E has at least i0 − 1 eigenvalues larger than zi0 + 20χ(b)ηr.
We first consider σi0 >

1
2n

2. It follows from (122) and Proposition I.4 that

σ̃i0 ≤ σi0 + ηr ≤ zi0 +
3b

b− 1

1

n
+ ηr ≤ zi0 +

6

n
+ ηr < zi0 + 20χ(b)ηr.

This shows that A+ E has exactly i0 − 1 eigenvalues larger than zi0 + 20χ(b)ηr.
Now consider σi0 ≤ 1

2n
2. By Weyl’s inequality, σ̃i0 ≤ σi0 + ‖E‖ ≤ (1 + 1

b )σi0 . If
(1 + 1

b )σi0 ≤ zi0 + 20χ(b)ηr, the proof is already done. Now we assume (1 + 1
b )σi0 >

zi0 +20χ(b)ηr. If (1+ 1
b )σi0−(zi0 +20χ(b)ηr)< 20ηr, following (111), we have χ(b)σi0 ≥

zi0 > (1+ 1
b )σi0−20(χ(b)+1)ηr and thus σi0 < 80bηr (b−1)(χ(b)+1)

4b−5 . Note that (b−1)(χ(b)+1)
4b−5

is decreasing for b ≥ 2 and (b−1)(χ(b)+1)
4b−5 ≤ 17/24. Hence, σi0 < 80bηr contradicts the sup-

position that σi0 ≥ 80bηr.
It suffices to assume (1 + 1

b )σi0 − (zi0 + 20χ(b)ηr) ≥ 20ηr, which implies that zi0 ≤
(1 + 1

b )σi0 − 20(χ(b) + 1)ηr. To prove σ̃i0 ≤ zi0 + 20χ(b)ηr, we show that f has no zeros
on the interval (zi0 + 20χ(b)ηr, (1 + 1

b )σi0). The proof is similar to the proof of Case 1 when
i0 = 1. We only mention the differences. Define Ŝσi0

as in (120) and the bound (115) also
holds for z ∈ Ŝσi0

. The goal is to show ε(z) < 1/3r for all z ∈ C0, where C0 is any circle
with radius 10ηr centered at a point z0 ∈ (zi0 + 20χ(b)ηr, (1 + 1

b )σi0) inside the region
Hi0 ∩ Ŝσi0

such that dist(z0, zi0 + 20χ(b)ηr)≥ 10ηr and dist(z0, (1 + 1
b )σi0)≥ 10ηr. If so,

by Lemma I.5, f has the same number of zeros inside C0 as g. Note that g has no zeros inside
C0 since Im(ϕ(z)) 6= 0 whenever Imz 6= 0 for all |z| > M and zi0−1 ≥ σi0−1 − 3b

b−1
1
n >

n2 − 3b
b−1

1
n >

3
2σi0 ≥ (1 + 1

b )σi0 by Proposition I.4. Since C0 was arbitrarily chosen, A+ E
has no eigenvalues on (zi0 + 20χ(b)ηr, (1 + 1

b )σi0).
It remains to bound ε(z) from (115). Note that z0 − zi0 ≥ 10ηr + 20χ(b)ηr and

(1 + 1
b )σi0 − z0 ≥ 10ηr. For z ∈ C0, from |z − z0| = 10ηr, we get |z| ≥ z0 − 10ηr ≥

zi0 + 20χ(b)ηr ≥ σi0 + 20χ(b)ηr > σi0 and |z| ≤ z0 + 10ηr ≤ (1 + 1
b )σi0 .

The same arguments as those in Case 1 yield that

max
i0≤l≤r

χ(b)
η

|z|
σl(χ(b)|z|+

√
2σl)

|σ2l −ϕ(z)|
<

1

3r

for any z ∈ C0. We only need to control

max
1≤l≤i0−1

χ(b)
η

|z|
σl(χ(b)|z|+

√
2σl)

|σ2l −ϕ(z)|
.

For any 1≤ l≤ i0 − 1, using similar computation from (121), we get

|σ2l −ϕ(z)| ≥ 1

2
(σl + z0 − 10ηr)(zl − z0 − 10ηr).

Plugging in z0 ≥ zi0 + 10ηr+ 20χ(b)ηr ≥ σi0 + 10ηr+ 20χ(b)ηr, we obtain

σl + z0 − 20χ(b)ηr ≥ σl + σi0 + 20χ(b)ηr.
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From σl ≥ n3, we see σi0 ≤ 1
2n

2 < 1
2σl. This, together with (111) and z0 ≤ (1+ 1

b )σi0−10ηr,
implies that

zl − z0 − 10ηr ≥ σl − (1 +
1

b
)σi0 ≥ σl −

1

2
(1 +

1

b
)σl ≥

1

4
σl.

Hence, |σ2l −ϕ(z)| ≥ 1
8σl(σl + σi0 + 20χ(b)ηr) and

max
1≤l≤i0−1

χ(b)
η

|z|
σl(χ(b)|z|+

√
2σl)

|σ2l −ϕ(z)|
≤ max

1≤l≤i0−1
χ(b)

ησl
σi0

χ(b)(1 + 1
b )σi0 +

√
2σl

1
8(σl + σi0 + 20χ(b)ηr)σl

< 45
η

σi0
≤ 45η

160ηr
<

1

3r

using the assumption σi0 ≥ 80bηr ≥ 160ηr and the bound χ(b) ≤ χ(2) = 9/8. Therefore,
ε(z)< 1/3r for all z ∈ C0.

The proof of Claim 3 is similar to the previous argument. Let Cj1 ,Cj2 be two disjoint
circles for j1, j2 ∈ Ji0, r0K. Then |zj1 − zj2 | > 40χ(b)ηr. Let d := dist(Cj1 ,Cj2) > 0. We
show that A + E has no eigenvalues lying on the real line between Cj1 and Cj2 . Take any
point x on the real line between the two circles so that Cx, the circle centered at x with
radius r := 1

10 min{d,20χ(b)ηr} (say), is inside the region Hj1 ∩ Sσj1
or Hj2 ∩ Sσj2

, where
dist(x,Cj1)> r and dist(x,Cj2)> r. Then using similar calculations as in the proof of Claim
2, it suffices to show that ε(z)< 1/3r. The remaining arguments are similar to those in the
proof of Claim 2; we omit the details.

J. Proofs of (28) and Proposition H.2.

J.1. Proof of (28). For the sake of completeness, we include the proof of (28) in this
section. The proof was established in [9, Appendix B.4].

Assuming n≥N , the matrix E has rank N almost surely, allowing us to express its sin-
gular value decomposition as E =

∑N
i=1 ηixiy

T
i , with its null space spanned by orthonormal

vectors h1, . . . , hn−N . Given the block structure of E :

E =

(
0 E
ET 0

)
,

its spectral properties are determined by those of E. Specifically, the resolvent G(z) = (z −
E)−1 has the eigendecomposition:

G(z) =

N∑
i=1

wiw
T
i

z − ηi
+

N∑
i=1

wN+iw
T
N+i

z + ηi
+

1

z

n−N∑
j=1

w2N+jw
T
2N+j ,

where the eigenvectors are wi = 1√
2
(xTi , y

T
i )T , wN+i = 1√

2
(xTi ,−yTi )T , and w2N+j =

(0, hTj )T .
From this, we can compute the traces

trIdG(z) =
1

2

N∑
i=1

(
1

z − ηi
+

1

z + ηi

)
+
n−N
z

,

trIuG(z) =
1

2

N∑
i=1

(
1

z − ηi
+

1

z + ηi

)
.

Equation (28) follows from the definitions that φ1(z) = z − trIdG(z) and φ2(z) = z −
trIuG(z).
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J.2. Proof of Proposition H.2. Note that Φ(x) is well-defined when |x| > ‖E‖. We use
α ≡ α(x) and β ≡ β(x) for brevity. Denote J = J1,2rK \ I := J1 ∪ J2 where J1 = J1, rK \
Jk, sK and J2 = Jr+ 1,2rK \ Jr+ k, r+ sK. Further, let t := |J1|= |J2|.

We analyze the eigenvalues of(
I2t −UT

J Φ(x)UJDJ
)T (

I2l −UT
J Φ(x)UJDJ

)
,(123)

where, using the expressions of D and UTΦ(z)U from Section 6, we have

I2t −UT
J Φ(x)UJDJ = I2t −

(
αIt βIt
βIt αIt

)(
DJ1

0
0 −DJ1

)
=

(
It − αDJ1

βDJ1

−βDJ1
It + αDJ1

)
.

The matrix (123) can be expressed as(
It − 2αDJ1

+ (α2 + β2)D2
J1

−2αβD2
J1

−2αβD2
J1

It + 2αDJ1
+ (α2 + β2)D2

J1

)
,

where each block is a diagonal matrix. Direct computation shows that the eigenvalues of
(123) are

1 + (α2 + β2)σ2l ± 2ασl

√
1 + β2σ2l =

(√
1 + β2σ2l ± ασl

)2

for l ∈ J1. The conclusion of Propositions H.2 follows by taking the square root of these
eigenvalues.
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